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Abstract

Ischemic diseases, especially coronary artery diseases and myocardial infarction, are the leading cause of human
death in the clinical setting. Unfortunately, most of the available clinical interventions can partially restore the func-
tion of ischemic myocardium, resulting in the progression of chronic heart failure.The induction of vascular tissue for-
mation, hereafter known as angiogenesis, can provide blood perfusion and prevent the expansion of ischemia-related
pathologies. In recent years, the discovery and advent of multiple stem cells into human regenerative medicine have
led to the alleviation of certain end-stage pathological conditions via direct differentiation into the mature and func-
tional cells or secretion of various cytokines and angiogenesis factors in a paracrine manner. Melatonin (mel) is a natu-
ral molecule with direct and indirect pleiotropic actions on different biological phenomena. This neurohormone

is primarily known for its antioxidant, tumoricidal, and anti-inflammatory actions in several pathological conditions.
Whether and how mel regulates the angiogenesis behavior of stem cells is currently under debate. Here, we collected
and evaluated recent data related to the angiogenic properties of mel on stem cells. Data from the present article
may help us in the development of new therapeutic regimes in patients with ischemic conditions.
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Introduction

In recent decades, the risk of cardiovascular diseases
(cvds) has increased in developing and industrialized
societies due to intensive lifestyle changes [1]. Cvds
encompass a group of heterogeneous pathological
conditions influencing both heart tissue and the vas-
cular system [2]. Among cvd patients, coronary artery
diseases (cad) and subsequent endothelial cell (ec)
injuries are the most prevalent conditions, leading to
prominent myocardial infarction (mi) and, thereby,
heart failure [3]. Data have shown that the gradual nar-
rowing or sudden occlusion of the coronary artery can
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interrupt the blood flow into the myocardium [4]. The
reduction of cardiac tissue o, levels and nutrients leads
to oxidative and bioenergetic stress in cardiomyocytes.
These features can lead to concurrent necrotic changes
and aberrant myocardial remodeling [5]. It is believed
that the increase of blood perfusion via the stimulation
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of angiogenesis/vasculogenesis is a strategic approach
to reduce the sequelae and post-complications of acute
ischemic conditions [6]. Angiogenesis is the forma-
tion of de novo vascular units from the pre-existing
vasculature in response to hypoxia and the increase
of proangiogenesis factors. The term vasculogenesis is
related to the direct participation of vascular progeni-
tor cells, such as endothelial progenitor cells (epcs), in
the generation of new blood vessels. It is thought that
both phenomena commonly occur in various patho-
logical conditions [7]. In the clinical setting, coronary
artery bypass graft (cabg) surgery and antithrombotic
therapy are conventional therapeutic approaches in
mi patients [8]. Despite the advantages of gabg meth-
ods and anti-coagulant administration, the individuals
are prone to fibrillation, bleeding complications, and
thromboembolism [8]. Because of these complica-
tions, clinicians and researchers have made attempts
to increase the efficiency of therapeutic approaches or
find new modalities to circumvent the limitations in
clinical settings.

The advent of stem cells, progenitors, and their
secretome to human medicine has led to significant
advances in the alleviation of various pathologies [9,
10]. Stem cells have been applied via different routes
in mi patients and experimentally induced mi ani-
mal models [11]. Based on the previously published
data, harsh microenvironments, including hypoxic
conditions and a lack of nutrient supply, can contrib-
ute to the death of transplanted stem cells at the site
of injury [12]. Meanwhile, mechanical stress during the
direct administration of stem cells into ischemic sites
can make these cells vulnerable to numerous insult-
ing conditions [13]. Therefore, pre-treatment and/or
co-administration of stem cells or other cells with pro-
tective agents may increase the regenerative outcomes
within the ischemic myocardium.

Melatonin (mel) is a lipophilic molecule with pleio-
tropic effects and has been studied in terms of its
actions on angiogenesis and vascularization [14, 15].
With its uncommon mechanistic role, numerous sign-
aling pathways are influenced by this hormone. Emerg-
ing data have indicated that mel exhibits both pro- and
anti-angiogenesis properties in the context of cvds [16].
The increase of angiogenic properties of stem cells,
either in a juxtacrine or paracrine manner, along with
direct orientation toward ecs, can improve the healing
of the myocardium [13]. To date, there are only a few
reports related to the pro- and anti-angiogenesis prop-
erties of mel on various stem cell lineages. Herein, we
try to highlight the possible role of mel in the angio-
genic potential of stem cells under ischemic conditions
(Fig. 1).
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Mel biogenesis and its role in biological systems
Chemically, mel is n-acetyl-5-methoxytryptamine,
which was initially detected in bovine pineal tissue [17].
The evidence is that mel evolved about 2.5 to 2.0 bil-
lion years ago in bacteria to eliminate the free reactive
oxygen species (ros) [18]. In eukaryotes, mel is pro-
duced by mitochondria, perhaps in every cell [19]. The
production by the pineal gland and systemic levels of
mel depends on the circadian cycle [20]. In addition to
the rhythm-regulating properties of mel, this molecule
possesses potent anti-ros activity in biological systems
[21]. The pineal gland only produces an estimated 5%
of total body mel, while the mitochondria of other cells
generate the bulk of the melatonin in animals [22-30]

The amino acid tryptophan is the precursor of mel.
To this end, circulating, tryptophan is internalized into
the pinealocyte parenchyma within the pineal gland
and chemically modified to 5-hydroxytryptophan (sero-
tonin) by the activity of tryptophan hydroxylase. In the
next step, amino acid decarboxylase converts serotonin
to 5-hydroxytryptamine, also known as serotonin, and
the addition of the acetyl group leads to the production
of n-acetylserotonin, which further converts into mel
by the enzymatic activity of acetylserotonin o-methyl-
transferase (Fig. 2) [31].

The inherent lipophilic entity of mel leads to rapid
blood and cerebrospinal fluid (csf) distribution, and
about 70% of the total circulating mel can be trans-
ferred by albumin to reach different tissues [32]. The
levels of mel are controlled by the direct activity of the
above-mentioned enzymes in response to circadian
rhythm and collaboration with hypothalamic suprachi-
asmatic nuclei [33, 34]. The importance of mel in differ-
ent organs relates to pleiotropic properties such as ros
scavenging, anti-aging effects, and inhibition of patho-
logical processes [35]. Notably, mel has multiple biolog-
ical actions, including inhibition of tumor cell growth
[36], wound healing [37], improving metabolic disor-
ders [38], inhibition of parasitic, bacterial, and viral
infections [39], and promotion of immune cell func-
tion [40]. Due to the multifaceted activity of mel and its
active role in numerous physiological and pathological
conditions, some of its underlying mechanisms remain
to be fully identified.

Besides, it was suggested that mel may have the
potential to modulate several pro-angiogenesis factors
such as epidermal growth factor [egf], platelet-derived
growth factors [pdef], transforming growth factor beta-1
[tgf-B1], insulin-like growth factor-1 [igf-1], vascular
endothelial growth factor [vegf], hepatocyte growth fac-
tor [hgf], and other factors [41]. Considering the critical
role of angiogenic responses in various physiopathologi-
cal conditions, here we addressed the potential function
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Fig. 1 Schematic illustration related to pleotropic effects of mel in stem cells. Designed by powerpoint software

of mel on the pro- and anti-angiogenesis properties of
stem cells.

Angiogenesis and vasculogenesis
The regulation of angiogenesis/vasculogenesis is a critical
step in a variety of different biological processes such as
growth, development, tumor expansion, and the healing
process [42]. Both angiogenesis and vasculogenesis are
controlled by means of intricate mechanisms involving
multiple cells, various cytokines, and growth factors [43,
44]. Understanding the molecular mechanisms and vari-
ous cells involved in the vascularization process could
help us achieve better regenerative outcomes [42].
Angiogenesis (neo-vascularization) is the common
means of blood vessel formation and encompasses sev-
eral consequential steps involving the generation of new
blood vessels by the activity of mature ecs (Fig. 3). In
response to hypoxia and ischemia, quiescent ecs are acti-
vated, proliferate, migrate, and undergo morphological
change to generate nascent vessels [45, 46]. Certain sign-
aling pathways and biomolecules are directly engaged
in the process of angiogenesis. For instance, vegf/vegfr
and angiopoietins (angs)/tie-2 axes, along with fgf/fgfr

signaling pathways, are actively involved in the angio-
genic response [43, 47]. The direct attachment of vegf to
vegfr-1 and —2 on the ec surface triggers proliferation,
migration, and phenotypic acquisition [48]. Co-activa-
tion of fgf/fgfr signaling pathway along with vegf/vegfr
axis intensity ec proliferation, and tubulogenesis activity
[49]. Ang-1 and —2 can bind to tie-2 on the ec surface to
control cell-to-cell connection and blood vessel matura-
tion, in which ang-1 stabilizes the nascent vascular tis-
sue structure by recalling pericytes while ang-2 promotes
vascular tissue remodeling and sprouting [50].
Vasculogenesis is also involved in the generation of new
vascular units with significant participation of progeni-
tors, and stem cells such as vegfr-2*/tie-2*/sca-1%/cd34"/
cd133* epcs (Fig. 3) [7]. Vasculogenesis is the dominant
form of blood vessel formation during the embryonic
step when it forms the primary vascular plexus, and in
adults, vasculogenesis, along with angiogenesis, can
help to supply blood into the hypoxic sites [7]. Upon
the activation of vasculogenesis, bone marrow epcs are
attracted to the hypoxic sites and can promote blood
vessel formation via the secretion of different cytokines,
thereby promoting maturation into functional ecs [51].
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Fig. 2 The schematic illustration of mel biogenesis in pinealocytes within the brain pineal gland. Created by biorender’s web-based software

Upon reaching the site of injury, epcs lose their stemness
(cd133], cd34*) and exhibit ec-related markers such as
vwf, ve-cadherin, endothelial nitric synthetase (enos),
and cd31 [7]. Like angiogenesis, several cytokines such as
vegf, notch, sdf-1a/cxcr4, along with other factors, regu-
late the process of vasculogenesis by epcs [52—54]. Fol-
lowing the formation of the nascent vascular tubes, other
cells, such as pericytes, wrap the ecs at the abluminal sur-
face of the vascular wall [55].

Angiogenesis properties of stem cells

Following the tissue regeneration, new vascular units are
generated to scavenge the dead cells and provide essen-
tial compounds such as oxygen and nutrients required
for cell proliferation, growth, and functional phenotype
acquisition [56]. The advent of stem cell therapy in the
clinical setting has opened an avenue for enhancing blood
perfusion in several pathological conditions [57]. Despite
the angiogenic properties of stem cells and secretome, it
requires significant time to achieve complete regenera-
tive outcomes in ischemic conditions [58].

Of the different stem cell types, epcs, mesenchymal
stem cells (mscs), and pluripotent stem cell-derived ecs
have been extensively used for the promotion of vas-
cularization in different pathological conditions [59].
As mentioned, epcs can regulate the process of vas-
cularization directly and indirectly via differentiation
into mature ecs or the release of several proangiogen-
esis factors [60]. However, due to the sacristy of epcs
in the systemic circulation and issues related to their
expansion, the application of epcs as common stem cell
sources for ischemic conditions is limited [61]. Using
some strategies, such as the culture of epcs in a serum-
free medium enriched with growth factors, can increase
the proliferation potential of these cells while preserv-
ing their stemness features (cd341) and angiogenesis
potential (vegf?, igf-11, and mmp-91) [62, 63]. Also,
epcs can control the process of vascularization via the
release of angiogenesis factors, i.e., vegf, inside nano-
sized extracellular vesicles (evs), namely exosomes
(exos), and microvesicles (mvs) [64]. In response to
the gradient density of vegf and other cytokines, epcs
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Fig. 3 Mechanism of angiogenesis versus vasculogenesis. In response to hypoxic/ischemic conditions, the release of proangiogenesis factors
activates the mature ecs in the close blood vessels (angiogenesis). The pioneer ecs, also known as tip cells, migrate in a cytokine gradient

density toward the ischemic/hypoxic zone. The lumen formation and proliferation of stalk and phalanx ecs can extend the developing blood
vessels toward the target zone. The addition of pericytes to the abluminal surface of de novo vessels stabilizes the integrity of the vascular wall.

Itis also possible that the activated bone marrow epcs migrate toward the ischemic/hypoxic zone and are involved in the development of new
vascular structure in a paracrine and/or direct orientation toward mature ecs (vasculogenesis) [7]. Reproduced with the permission of the publisher.

2024. Cell proliferation

migrate toward the ischemic area to foster the forma-
tion of new vessels [65].

Like epcs, mscs with spindle-shaped morphology
exhibit angiogenic behavior with the potential to morph
into ecs [66, 67]. These cells also release an array of angio-
genesis factors after direct injection/transplantation into
the target sites, resulting in the promotion of ec function,
tubulogenesis capacity, and regulation of immune cell
function [59, 68]. It should also be kept in mind that mscs
can exert pro- and/or anti-angiogenesis properties in a
context-dependent manner. Thus, the administration of
mscs for the alleviation of ischemic conditions should be
done cautiously [68]. Previously, it was shown that adi-
pose tissue-derived mscs (ad-mscs) can produce angioc-
rine factors [69]. Data have confirmed that ad-mscs can
stimulate the expression of cxcr-4, il-1a, il-6, vegfa, stat3,
and il-8/cxcl8 in human umbilical vein ecs (huvecs) with
active participation of recruited neutrophils and mac-
rophages [70]. Stem cells, especially mscs and epcs, are
biologically armed to control the process of vasculariza-
tion under physiological and pathological conditions.

Effect of mel on the angiogenic properties of stem
cells

Although stem cells offer a promising therapeutic avenue
in the regeneration of ischemic microenvironments, their
limited survival rate and retention time after transplan-
tation are problematic issues [71]. Harsh ischemic niches

can directly damage mscs via the induction of apoptotic
changes, in which about 80% of transplanted mscs die
within a few days after administration [72]. Mel easily
interacts with various stem cell types with the potential
to alter proliferation rate, stemness features, self-renewal
properties, and commitment toward target cell lineages
[71]. Based on the published data, mel has the potential
to influence both paracrine and differentiation properties
of stem cells in the context of angiogenesis (Table 1).
Inflammatory response, along with oxidative and nitro-
sative stresses, can directly influence the viability of mscs
within the ischemic site. Thus, mel can protect the trans-
planted mscs by scavenging the free radicals such as ros
and nitric oxide (no) metabolites [73-75]. Tang et al
found that treatment of rat mscs with mel can reduce oxi-
dative stress induced by h,o0, under in vitro conditions.
Of note, mel has the potential to increase the viability of
oxygen-glucose-deprived rat mscs and close it to near-
to-normal conditions. At least part of the activity of mel
on mscs is orchestrated via the activation of membrane-
bound mel receptors 1 (mtl) and 2 (mt2) (Fig. 4) [76].
In support of this, the protective effects of mel on mscs
were blunted in the presence of mel receptors’ antagonist
luzindole [72]. Aierken et al. found that the expressions
of mtl and mt2 are stimulated in human umbilical cord
mscs exposed to the mel treatment via the activation of
the pi3k/akt signaling pathway [77]. Data have shown
that mel-treated rat mscs produce catalase, superoxide
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to the g-protein-coupled receptor superfamily. Along with these receptors, mel can activate cytosolic enzyme, namely quinone reductase 2
(gr2; also known as mt3), and nuclear receptors rzr/ror. The attachment of mel to mt1 and mt2 recruits several intracellular effectors such as pkc,
plcf, and pka. In the presence of mel, gai activation of mt1 can contribute to the stimulation of plcf3, while the promotion of gf3/y is followed
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by activating camp and pkc. Mel promotes conformational changes in mt2 and thereby activates the ai subunit. Along with these changes, pkg
is triggered via guanylate cyclase. Also, mt2 can engage pkc and erk1/2 complexes. Created by biorender’s web-based software

dismutase (sod), bfgf, and hgf compared to the non-
treated control [76]. The incubation of human epcs with
mel-treated mscs led to enhanced tubulogenesis proper-
ties in vitro as well [76].

It has been thought that mel can alleviate the patho-
logical conditions within the cardiac tissue mostly via the
neutralization of free radicals and stimulation of antioxi-
dant systems [78]. Mel could protect transplanted mscs
from the direct detrimental effects of ros and enhance
the therapeutic potency for mi [79]. This neurohor-
mone can enhance the angiogenic activity of ad-mscs
by activating akt signaling, suppressing the caspase cas-
cade, inhibiting ros formation, and inducing antioxidant
enzymes such as sod-1 and catalase [78]. In vivo studies
have shown that mel pre-treatment promoted the reten-
tion time and survival of transplanted ad-mscs in the rat
model of mi by the regulation of paracrine activity, and
release of proangiogenic and mitogenic factors like igf-
1, bfgf, hgf, and egf [80]. It has also been indicated that
mel can boost angiogenesis in injured myocardium via
the regulation of the sirt signaling pathway (sirtl and 3),
leading to improved mitochondrial activity, autophagic
response, and inhibition of apoptosis and inflammation
[78]. Besides, mel induces sirtl inside ad-mscs, leading
to the increase of a-sma* vascular cells and induction of

arteriogenesis in infarcted myocardium [81]. It has been
thought that the promotion of angiogenesis a few hours
after mi can reduce cardiomyocyte injury and aberrant
myocardial remodeling [78]. To increase and prolong
the stability and regenerative properties of ad-mscs in
the target tissues, poly(lactide-co-glycolide)-monometh-
oxy-poly (polyethylene glycol nanoparticle loaded with
mel was used. This strategy can help the transplanted
cells survive the harsh niche. In 2018, ma et al. found
that the encapsulated mel inhibits the formation of the
p53-cyclophilin d complex, and mitochondrial dysfunc-
tion in response to hypoxia/reoxygenation injury [82].
In addition to exogenously administered stem cells, mel
accelerates the healing of injured myocardium via the
protection of local c-kit* cardiac progenitor cells against
the oxidative stress by concomitant reduction of mir-98
and increase of stat3 in mi mice [83].

Mias and co-workers found higher pro-angiogen-
esis properties of mel-treated mscs in rats with renal
ischemia—reperfusion injury, coinciding with the
increase of cd31%, and vwf* ecs and a-sma* pericytes
[76]. Treatment with mscs not only increased the survival
rate (~ threefold) in the rat model of stroke via the stimu-
lation of the erk1/2 signaling pathway but also promoted
the formation of de novo cd31* vascular units. Along
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with these changes, the expression of vegf transcription
is induced in gfap™ astrocytes [72]. These data confirmed
that mel improves the survival, angiogenesis behavior,
and neurogenic activity of mscs with simultaneous alter-
ation of glial cell function [84]. Mel promotes the angio-
genic behavior of mscs via many underlying mechanisms.
For example, lee and co-workers proved that incubation
of ad-mscs with mel increased proliferator-activated
receptor gamma coactivator-1 alpha (pgc-1a), leading to
stimulation of proliferation (cyclin ef, cdk21, cyclin d171,
and cdk41) coincided with the production of angiogen-
esis factors such as vegf, fgf, and hgf, and migration rate
in vitro. Under such conditions, the mitochondrial activ-
ity (complex i and iv) is also enhanced [85].

The administration of mel-treated mscs in mice with
ischemic hind limbs led to the reduction of fibrotic
area and an increase of capillaries (cd311), and arteri-
oles (a-smat) (Fig. 5) [85]. Pgc-1la influences angiogenic
behavior differently. For instance, pgc-la induces the
production of no by enos under ischemic conditions [86].
Irrespective of mscs, the activation of pge-1la in other cell
lineages, such as multiple myeloma rpmi-8226 cells, can
increase the expression of vegf and glut-4 [87], indicat-
ing the critical role of pgc-1a in the control of angiogen-
esis in multiple cell types, especially in mscs. Notably, the
induction of vegf under hypoxic conditions is related to
the activation of pgc-la. Rahimifardin and co-workers
confirmed the concomitant induction of vegf, pgc-la,
ampk, and estrogen-related receptor 1 alpha (errla) in
cardiac tissue of hypoxic rats exposed to aerobic training
over 3 weeks [88].

Mel also upregulates the expression of sirtl, leading to
postponing senile changes in mscs and enhanced survival
rate, while the induction of sirt3 by mel also improves
the differentiation capacity, and delays senescence via
induction of antioxidant system activity [89]. Inhibition
of sirtl by sirtinol impaired hif-1a-induced tubulogen-
esis activity of human mscs after being exposed to 1% o,
for 24 h, with simultaneous reduction of glutl and vegf
[90]. More interestingly, mscs can modulate the process
of angiogenesis during pathological conditions in a par-
acrine manner via the secretion and release of exosomal
sirt3, improving the tubulogenesis, migration, and anti-
oxidative activity of hyperglycemic huvecs in vitro [91].
Along with these changes, the levels of pro-inflammatory
cytokines such as il-1, il-6, tnf-a, mcp-1, vcam-1, and
icam-1 were also diminished. The injection of msc exos
in diabetic mice with a full-thickness cutaneous tissue
injury led to accelerated wound healing, an increase in
angiogenesis (cd34" cells), and re-epithelialization [91].
Han and co-workers reported that the cytoprotective
effects of mel on mouse ad-mscs depend on the activa-
tion of the sirt-1 signaling pathway [81]. Based on the

Page 9 of 19

data, the synergistic properties of mel and ad-mscs led to
a reduction of fibrosis in infarcted mice, via the increase
of cardiac vegf and bfgf levels, coinciding with the signif-
icant increase of cd31" and a-sma™ vascular units [81].
The regulation of target factors such as foxos, nf-kb, p53,
pgcl-a, and autophagy-related genes (atgs), sirtl exerts
several cytoprotective effects on transplanted stem cells,
leading to enhanced regenerative outcomes [81]. consid-
ering the data collectively, pre-treatment or co-adminis-
tration of mscs with mel can improve the angiogenesis
potential in part by the modulation of sirt proteins.

In recent years, the effects of mel on the paracrine
activity of mscs via the production and release of evs
have been at the center of debate. Mel-pretreated bone
marrow mscs (bmscs) induce m1-m2 polarization of
macrophages via the upregulation of pten, inhibition of
akt phosphorylation, and suppression of immune cell
response. As a result, m2 macrophages release several
angiogenesis factors such as vegf, fgf, and egf, which are
important in the healing process. Exos released from
mel-treated mscs can regulate the inflammation and
accelerate the regeneration of wounds (angiogenesis?
and collagen synthesist) under diabetic conditions in
diabetic rats [92]. Besides, mel-treated mscs produce
evs with similar effects in spinal cord injury (sci) animal
models. These evs stimulate microglia/macrophages to
m2-like polarization and functional motor recovery via
the delivery of ubiquitin-specific protease 29, leading to
nrf2 ubiquitination [93]. Mel-treated msc exos exert ther-
apeutic properties against renal ischemia—reperfusion
injury via the local increase of bfgf, hgf, sox9, and vegf
[94]. In hepatic injuries, mel-treated ad-msc evs allevi-
ate the pathological conditions via the reduction of sys-
temic aspartate aminotransferase and direct hepatocyte
injury [95]. Such effects have been documented in sev-
eral fibrotic diseases, including kidney fibrosis. Yea et al.
found that mel-treated ad-mscs exos exhibit prominent
anti-inflammatory and anti-fibrotic effects in chronic
kidney disease. Mel preconditioning stimulates the mscs
to produce exos with certain rna types with angiogen-
esis potential. Besides, mel can increase the exosomal
levels of mir-29b-3p, mir-7a-3p, let-7b-5p, let-7c-3p,
mir-153-3p, mir-26a-2-3p, and mir-846-5p. These micro-
rnas are recognized for their anti-inflammatory and
anti-fibrotic properties, by regulation of certain genes
involved in ecm production, fibrogenesis, and inflam-
matory cytokine release [96]. Yeo et al. found that mel-
treated mscs release exos with the potential to improve
mitochondrial function, proliferation, and upregulation
of angiogenesis factors in chronic kidney disease. Under
such conditions, the increase of prpc levels and activ-
ity of mir-4516 can delay the senile changes within the
injured renal tissue [97]. In another study, it was found



Rashidi et al. Stem Cell Research & Therapy ~ (2025) 16:424 Page 10 of 19

A B —e— PBS
o— MSC ¢
o Melatonin+MSC £
[=}
z 1.0+ o » 9 3
= w1 2 g 23
°© cg 08 i ¢ s
S E L3
£2 06 3 ;3
s
E 0.4+ } ¢
Ba
g 2% »
° mo 0.2 P
«© o \I o o .
N
00 T T T T T 1
0 3 7 14 21 28
Day
D = F o
] Limb salvage PBS MSC Melatonin+MSC i

[ Toe loss
Il Foot necrosis

Capillaries (number)
- N W
o o o
*
*
Lk
*

0 T T T

Distribution (%)
8

&
Q@e @0.)0 \0(\\0,)0
2
@Q} x®
0 G PBS MSC Melatonin+MSC
I H_ #
Q @ ®\0 c-’() ] *%
o\ Qo
N E
2 8
\g *k
5 4
g |
< 0 T T T 1
2) O &
I PBS MSC Melatonin+*MSC ~ J __ 80+ & F K
PR 8 P
&= 160 w
° 3 3
o &8 404
g L_O) % *%
5 - B
- 0 T T 1
=) O &
N
QQ @% \Ib\° (OO
e
K L _ 100-
2
1]
o
w o 50
5 | ? -
T o 4
8 ke
= 0
> O &
(N
& ¥ S
e

Fig. 5 Study of tissue regeneration in mice with hindlimb ischemia (a-1). Measuring blood perfusion using laser doppler imaging in mice with hindlimb
ischemia that received phosphate-buffered saline (pbs), mscs, and mel-pretreated mscs (a, b). Data indicated that blood perfusion was significantly
stimulated in mice that received mel-treated mscs compared to mscs and pbs groups after 28 days (b: **p <001 vs. pbs; “p<0.05, #p <001 vs. mscs).

Gross view of ischemic hindlimb in terms of toe loss, foot necrosis, and limb salvage 28 days after injection of mscs, and/or mel-treated mscs (c). The foot
loss is reduced in ischemic mice treated with mscs and mel-treated mscs. Distribution of different parameters after 28 days (d). Immunofluorescence
staining indicated enhanced microvascular intensity in the ischemic area with green-color cd31 capillaries and red-colored a-sma arterioles (e-g; scale bar:
50 pm). Panels f and h indicated capillaries and arterioles in different experimental groups after 28 days post-transplantation (**p<0.01 vs. pbs; #p<0.01

vs. mscs). Measuring the fibrotic changes and collagen fibers using sirius red staining in the ischemic area after 28 days (i; scale bar: 100 um). Data showed
that the levels and density of collagen fibers were reduced in the presence of mscs, especially mel-treated mscs. fibrosis was quantified as % of sirius
red-stained collagen area (j; **p <0.01 vs. pbs; ##p < 0.01 vs. mscs). h & e staining was performed to monitor tissue necrotic changes in the ischemic limb
after 28 days (k; scale bar: 100 um). the necrotic area was quantified as the % of necrosis (I; **p < 0.01 vs. pbs; ##p < 0.01 vs. mscs). along with the reduction
of fibrotic changes, the necrosis was also diminished in the ischemic mice after receiving mel-mscs. One-way anova and tukey's post hoc test (mean+sem).
phosphate-buffered saline pbs; [85]. Reproduced with the permission of the publisher. 2019. Biomolecules & therapeutics
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Fig. 6 Monitoring the angiogenesis properties of mel in lethally irradiated diabetic wild-type mice with ischemic hindlimb that received

bone marrow transplantation from transgenic egfp™ mice (a, b). Simultaneous expression of egfp and cd31 at the site of ischemia indicated

the successful migration and maturation of donor bone marrow epcs in the presence of mel (a; scale bar: 50 um). Data revealed a statistically
significant difference in the number of recruited egfp*/cd31* cells/hpf in diabetic mice with hindlimb ischemia that received mel compared

to matched control mice (b; *p <0.05 vs. diabetes). It was suggested that mel can reduce the abnormal epc function and stimulate blood perfusion
via the up-regulation of enos, ampk, and ho-1, and reduction of oxidative stress (c). student’s t-test. Wild-type mice=21, diabetes-control, n=27,
and diabetes + melatonin treatment=24). egfp enhanced green fluorescent protein. [99]. Reproduced with the permission of the publisher. 2022.

International journal of molecular sciences

that mel-pretreated ad-mscs upregulate mir-145-5p to
control the tgf-p2/smad3 signaling axis and inhibit cor-
pus cavernosum fibrosis in the rat model of cavernous

nerve injury [98].

As with mscs, the angiogenesis properties of mel have
been proven on epcs in in vitro and in vivo conditions.
Kuo and colleagues found that mel treatment (100 pm)
can alleviate the detrimental effects of hyperglyce-
mic conditions (25 mm glucose) on human epcs via the
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Fig. 7 Monitoring the cytoprotective impact of mel on mouse epcs (a-h). Pre-treated epcs with 50 um mel for 2 h were incubated with 400 pg/
ml ages for 24 h. Ages can affect the mitochondrial integrity via the alteration of mitochondrial permeability transition pore (mptp) opening,
indicated by the reduction of green-fluorescent calcein-am and cobalt (a, b; scale bar, 50 um). Pre-treatment with mel can reduce mptp opening
in epcs and close it to near control levels. Mel can prevent the apoptotic changes in age-treated epcs via the reduction of bax, cytochrome ¢,

and caspase-9, and the increase of bcl-2 (c and d). Monitoring the autophagy response in age-incubated mouse epcs (e-h). Western blotting
showed that mel can reverse the detrimental effects of ages on autophagy effectors (Ic31, p62¢, and lamp21) in mouse epcs (e and g).
Immunofluorescence images indicated the reduction of red-colored p62, and an increase of green-colored Ic3 punctata inside epcs in mel-treated
epcs incubated with ages, indicating the activation and completion of autophagy response (f and h: scale bar: 25 um). One-way anova followed
by tukey’s test (mean +sem). n=3.**p<0.01 or *p < 0.05. [101]. Reproduced with the permission of the publisher. 2018. Experimental & molecular
medicine
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phosphorylation of enos, ampk, and an increase of heme
oxygenase-1 [99]. The administration of mel in diabetic
mice with hind limb ischemia also restored the mobili-
zation properties of epcs to the site of injury, similar to
the control groups. To be specific, the histological exami-
nation revealed the existence of egfp* epcs with con-
comitant cd31 expression within the ischemic regions,
indicating the protective effects of mel on epcsdynamic
growth, migration, and maturation under diabetes-
induced ischemia conditions (Fig. 6) [99].

Patashan et al. observed that mel improves the reno-
protective properties of early-growth epcs [100]. The
systemic injection of 0.5 x 10° epcs pre-treated with 5 um
mel can reduce acute renal ischemia complications (cre-
atinine|) compared to the ischemic mice that received
non-treated epcs [100]. These effects were reduced in
the presence of luzindole, indicating the cytoprotective
activity of mel on epcs via surface mtl and mt2 receptors
[100]. Data indicated that treatment of epcs with mel can
blunt the apoptotic effects of tgf-p and increase the angi-
ocrine capacity of epcs (vegff) without any significant
differences in the levels of ang-2, fgf-2, sdf-1a, hgf, and
scf [100]. These data indicate that, similar to mscs, co-
administration of epcs with mel or injection of mel pre-
treated epcs can improve the angiogenesis behavior and
reduce the apoptotic changes, leading to cell resistance
against the harsh microenvironments.

The activation of autophagy in mel-treated epcs is
another possible mechanism that helps these cells pro-
mote the vascularization process under pathologi-
cal conditions. Jin et al. showed that mel improves the
autophagic flux (Ic3-ii/lc3-i ratio? and p62]) of mouse
epcs in response to advanced glycation end product (age)
treatment (Fig. 7). Treatment with mel led to increased
autophagic activity via ampk/mtor signaling pathway
(p-ampk/ampk?, p-mtor/mtor?t, p-p70s6k/p70s6k?, and
p-4ebpl/4ebplt), leading to enhanced in vitro tubulo-
genesis and angiogenesis (a-sma™ arterioles) capacity in
mice with diabetic wounds (Fig. 8) [101].

It seems that the stimulatory/inhibitory effects of mel
on epcs are context-dependent. For example, lin and
co-workers found that mel has the potential to inhibit
pathological angiogenesis in terms of senile macular
degeneration in mice with a corneal alkali burn model
[102]. Mel at a dose of 60 mg/kg can exert cizumab-like
activity on the angiogenesis potential with concomitantly
reduced swelling rate and migration of cd31%, cd34%, and
cd133* epcs in the corneal epithelial layer during 7 days
(Fig. 9) [102]. Similar to these data, the recruitment of
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cd31, cd34, and cd133 cells was reduced in a matrigel
plug containing 100 ng/ml vegf, and different doses of
mel, ranging from 0.1 to 1 mm, in the chorioallantoic
membrane assay. It seems that the opposite effects of mel
on the mobility, recruitment, and angiogenesis capacity
of epcs are dose-dependent, in which the higher mel lev-
els can directly inhibit angiogenesis [102].

The molecular processes that may explain the anti-
angiogenic effect of mel were identified in chronic
obstructive pulmonary disease (copd) rats that received
simultaneously 4x 10° bm-mscs via intratracheal route
and 30 mg/kg mel daily for 30 days [103]. Irrespective of
improvements in pulmonary function parameters, data
indicated the down-regulation of both hif-1a and reduc-
tion of vegf peptide in lungs in copd rats that received
mel plus mscs. Along with these changes, cd31* capil-
laries were reduced in inflamed lungs, indicating the
inhibition of local angiogenesis [103]. It is assumed that
the major reason for these effects is related to the anti-
oxidant and anti-inflammatory properties of mel. On the
other hand, it is also possible that the decline in oxidant
and inflammatory cytokines allows transplanted mscs
to trans-differentiate into mature resident cells such as
pneumocytes, resulting in the restoration of air-blood
barrier function [104]. Mel has the potential to inhibit the
translocation of hif-1a to the nucleus, leading to down-
regulation of vegf and lack of hif-1a/phospho-stat3/cbp/
p300 complex [105].

Conclusions

In vitro and in vivo experiments have revealed the cyto-
protective and detrimental effects of mel on different cell
types. It seems that the impact of mel on stem cell bioac-
tivity is multifaceted and is achieved via engaging various
mechanisms. Both pro-angiogenesis and anti-angiogen-
esis properties can be determined in mel-treated stem
cells in a context- and dose-dependent manner. Along
with the stimulation of angiogenesis properties, mel can
also protect the stem cells against the harsh microenvi-
ronments after transplantation. In physiological doses of
mel, the stimulation of membrane-bound receptors and
shared signaling pathways can control the bioactivity
of stem cells, while in pharmacological concentrations,
mel can enter the host cells in a receptor-independent
manner, and thus other intracellular mechanisms are
activated. Both pro-angiogenesis and anti-angiogenesis
properties have been documented in terms of mel on
epcs under pathological and physiological conditions.
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Fig. 8 Monitoring the healing process of cutaneous tissue wounds in diabetic mice on days 7 and 21 using h & e staining (a: scale bar: 1000 pm).
Images revealed the reduction of wound area in diabetic mice that received mel. High-magnified images and immunofluorescence staining
confirmed the increase of a-sma* arterioles in the wound area after 7 days (b, ¢; scale bar: 1000 um). Measuring the wound length in different
experimental groups after 7 and 21 days (d). The number of vessels and a-sma™ arterioles were counted in h & e and immunofluorescent images,
respectively, 7 days after diabetes mellitus induction (e and f; scale bar: 100 pm). Masson’s trichrome staining was done to monitor the distribution
of collagen fibers at the site of cutaneous tissue injury on days 7 and 21 (f; scale bar: 1000 um). The levels of collagen fibers were higher in diabetic
mice that received mel compared to matched diabetic controls. One-way anova followed by tukey’s test (mean+sem). n=24.**p<0.01. [101].
Reproduced with the permission of the publisher. 2018. Experimental & molecular medicine

(See figure on next page.)

Fig. 9 The inhibitory effect of mel on angiogenesis in a mouse model of corneal alkali burn (a-e). The angiogenesis levels in normal

and alkali-burned corneas (a). stereomicroscopy indicated that the angiogenesis intensity was diminished in mel-treated mice in a dose-dependent
manner (20 mg/kg or 60 mg/kg) compared to other groups that received pbs or 5 mg/ul bevacizumab (n=6). Corneal stromal thickness

was evaluated by h & e staining 7 days after alkali burn injury (b and c). Mel can diminish the swelling of the cornea in a dose-dependent manner.
Immunofluorescence staining revealed that mel blunted the angiogenesis behavior by reduction of mature cd31* ecs, and cd34*, or cd133+epcs
at the site of injury (d and e). n=6; one-way anova. *p <0.05 vs. uninjured corneas; and #p < 0.05 vs. damaged corneas. [102]. Reproduced

with the permission of the publisher. 2023. Cells
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The apparent conflicting findings may relate to the dose
and exposure duration in different situations. Future
studies should focus on the determination of the dual
effects of mel on angiogenesis outcomes under various
pathological conditions.
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