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Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion 
of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary 
and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and 
large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and 
systemically. This pleiotropy of GH’s effects is puzzling, but the association with cancer risk automatically raises a concern for patients with 
acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, 
suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the 
distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical 
data. Along this discourse, we critically weigh the targetability of GH action in cancer—first by detailing the molecular mechanisms which 
posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On 
the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable 
subset of current cancer prognoses.
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ESSENTIAL POINTS

• Hundreds of studies across > 20 different cancer 
types over the last 70 years have amassed a persuasive 
body of evidence implicating GH and cancer

• Autocrine/paracrine, rather than endocrine, GH ac-
tion promotes age-associated cancer development 
(does this reconcile incongruity between empirical 
and clinical data?)

• GH signaling directly orchestrates several hallmark 
tumor-supportive mechanisms at/in the tumor 
microenvironment

• Systemically blocking GH action can also have indir-
ect benefits via reduction of IGF1 and improving in-
sulin sensitivity

• GHR antagonism is an effective and highly feasible 
approach to enhance the efficacy of multiple types 
of anticancer therapies

Growth hormone (GH) is a 191-amino-acid polypeptide hor-
mone, which was first identified by Evans and colleagues in 
1921 in bovine pituitary extracts as a growth-promoting fac-
tor when administered to rats (1) and was subsequently puri-
fied in 1944 from oxen anterior pituitary lobe (2). Prior to 
that, the term “hormone of growth” was preemptively coined 
by the American neurosurgeon Harvey Cushing in 1909, an-
notating an unknown growth-regulating pituitary-derived 
factor that could underlie pituitary dysfunctions, leading to 
growth deficits, that had been reported since the late nine-
teenth century (3, 4). Treatment with cadaveric extracts of hu-
man GH started in the early 1950s but because of safety and 
scalability issues, it was replaced completely by recombinant 
human GH after the first drug—Protropin (somatrem for in-
jection), a recombinant human GH grown in Escherichia 
coli—was approved in 1985 by the United States Food and 
Drug Administration (US FDA) for the treatment of GH defi-
ciency (GHD) in children (5). Almost 30 years since their iden-
tification of GH, it was Evans and colleagues in the early 
1950s who presented the first association of GH and cancer 
through reports describing occurrence of spontaneous neo-
plasms in multiple tissues of GH-sufficient normal rats follow-
ing treatment with pituitary-derived GH (6-8). Since then, 
over the last 70 years, a large amount of scientific interest 
and effort have revealed significant details and rekindled 
pharmaceutical interest in the role of GH in cancer, as well 
as some concern around the use of GH as a treatment in clin-
ical GHD.

Cancer initiation is preceded by progressive accumulation 
of mutational changes in the genome (modulated by intrinsic 
and extrinsic factors like lifestyle and exposure to carcino-
gens) which turns causal when one or more proto-oncogenes 
or tumor suppressor genes are mutated (driver mutation) to 
elicit cellular transformation. Classically, cellular growth fac-
tors come into play to impart tumoral growth factor auton-
omy and promote rapid clonal expansion of the transformed 
cell into a colony of cells, then to a heterogenous self-sufficient 
tumor mass along with rapid disease progression (9). 
However, growth factors can also participate in oncogenesis 
by upregulating the rate of progressive accumulation of muta-
tions and downregulating mutational repair pathways, thus 
causing genomic instability. GH secreted from the anterior pi-
tuitary and distributed via blood throughout the body to exert 
endocrine effects, functions as a classical hormone. In con-
trast, GH produced in nonpituitary and tumoral tissues is 
not distributed systemically through blood but rather used 
in and around the site of origin (autocrine/paracrine effects), 
acting functionally as a cellular growth factor rather than a 
classical endocrine hormone. As we discuss throughout this 
review and shown in Fig. 1, this distinction is vital, since the 
effect of GH as a cellular growth factor (autocrine/paracrine 
action) in cancer is more relevant than that of GH as a hor-
mone (endocrine action), especially in vivo.

Pituitary/Central/Endocrine GH
Mature 22-kDa human GH is encoded by the GH1 gene, with 
anterior pituitary gland as the central site of GH production. 
Pituitary GH, distributed throughout the body via circulation, 
acts as a classical endocrine hormone exerting its action in tis-
sues which express its cognate receptor—the GH receptor 
(GHR) (10)). GH secretion by the somatotroph cells of the an-
terior pituitary gland is under the positive regulatory effects of 
hypothalamic GH-releasing hormone (GHRH, binds to 
GHRH receptor GHRHR) and gastric ghrelin (binds to GH 
secretagogue receptor GHSR), and the negative regulatory ef-
fects of hypothalamic somatostatin (SST, binds to SST recep-
tors SSTRs), the latter setting the pulsatile pattern of pituitary 
GH secretion. Additional regulators of GH production at the 
hypothalamic and pituitary levels include negative feedback 
inhibition by GH (an autocrine/paracrine effect via GHR ex-
pressed in the pituitary and hypothalamus (11)) and its down-
stream effector, insulin-like growth factor 1 (IGF1), and 
multiple other physiologic and lifestyle factors (12). 
Endocrine GH largely directs postnatal cellular differentiation 
and proliferation of bone, cartilage, and muscle, which 
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establishes normal longitudinal growth. Moreover, GHR has 
highest expression at the liver hepatocytes, where GH is the 
principal inducer (>75%) of circulating IGF1, which in turn 
amplifies and renders several growth-promoting effects of 
GH. Importantly GH and IGF1 present several mutually ex-
clusive and overlapping physiologic effects in a tissue-specific 
manner, including in cancer (13, 14). The GHR is also differ-
entially expressed in several other cell types, including adipose 
tissue (AT), immune system, brain, kidney, bladder, spleen, 
thymus, stomach, intestines, pancreas, lungs, heart, skin, 
and the reproductive organs, where endocrine GH helps regu-
late normal organ development and maintenance of function 
in a tissue and sex-specific manner. Endocrine GH also plays 
a distinct role in whole body metabolic homeostasis, by exert-
ing a catabolic effect on lipids (fat breakdown to release free 
fatty acids and glycerol) and anabolic effects on carbohydrate 
(increases glucose production via glycogenolysis and gluco-
neogenesis) and proteins (increases protein production and 
decreases protein turnover). Pituitary GH production peaks 
shortly after puberty when adulthood and sexual maturity is 
reached, and thereafter steadily decreases with age to low lev-
els, accompanied by a concomitant decrease in serum IGF1—a 
seemingly protective phenomenon collectively described as so-
matopause—often misinterpreted as a condition to be treated 
with GH replacement therapy due to some phenotypic over-
laps with GHD (15). The phenomenon of somatopause itself 
argues against endocrine GH’s role in promoting cancer, as 
> 90% of cancer diagnosis is in the age group of > 50 years 
and less than 2% of the cancer deaths are in the age group 
of < 40 years (16-18).

Extrapituitary/Nonpituitary/Peripheral/ 
Autocrine/Paracrine GH
In 1980, Sporn and Todaro introduced the concept of “auto-
crine” growth factors in addition to the previously known 
concepts of endocrine and paracrine factors (19). They used 
the term to define the polypeptides that are produced and uti-
lized by cells during malignant transformation, and which en-
able uncoupling of a normal cell from the homeostatic growth 
signaling program by imparting autonomy in growth signal-
ing. This “self-sufficiency in growth signaling” is essential 
for rapid mitogenic proliferation necessary for tumor forma-
tion and was described as a classical “hallmark” of cancer 
(20). Mol et al, as early as 1995, reported the first instances 
of GH acting in an autocrine/paracrine manner in normal 
mammary tissue (mostly progestin dependent) as well as in 
mammary tumors (mostly progestin-independent) of dogs 
and cats (21, 22). Extrapituitary GH production and abun-
dant expression of GHR in several nonpituitary tissues set 
up a putative autocrine/paracrine loop defined by Harvey 
and colleagues in 1997 (11, 23). Lobie and colleagues, in 
1997, first engineered an autocrine/paracrine production of 
GH by transiently transfecting rat liver fibroblast cells with 
human or bovine GH expression plasmids (24). Unlike in pi-
tuitary GH expression regulation, GHRH- or SST-mediated 
regulation of expression is not consistently observed in case 
of nonpituitary GH (25-27). Moreover, extrapituitary GH is 
mostly secreted in much lower amounts (no significant contri-
bution to circulating GH levels) (28) but yields a more pro-
nounced local (autocrine/paracrine) effect due to a higher 

Figure 1. Pituitary (endocrine) and nonpituitary (autocrine/paracrine) GH and cancer: GH produced from the pituitary (induced by hypothalamic 
GH-releasing hormone [GHRH] and gastric GHRL and suppressed by somatostatin [SST]) acts as an endocrine hormone and affects all cells that express 
functional GHR exerting listed functions, the major one being inducing most of the circulating IGF1 from the liver (and some other organs). This pituitary/ 
endocrine GH has several known tissue-specific and sex-specific effects and generally decreases with age after adulthood (so called somatopause), 
questioning the importance of its direct effect on a predominantly age-associated disease like cancer. On the other hand, several nonpituitary sites (listed) 
also secrete GH which does not contribute to circulating levels and has peripheral autocrine/paracrine actions on the tissue of origin, as a local growth 
factor. This nonpituitary/autocrine/paracrine GH has multiple tissue-specific effects and known effects in pathology, such as in cancer, and can increase 
with age in some tissues. Therefore, at the tumor microenvironment (TME) in an adult, GH action promoting cancer constitutes primarily the autocrine/ 
paracrine effect of nonpituitary GH and possibly some endocrine effects of the pituitary GH.
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localized concentration (not diluted in circulation). 
Importantly, unlike pituitary GH, extrapituitary GH has 
been reported to increase with age in multiple tissues, includ-
ing colon, breast, and splenic lymphocytes (29), and has been 
shown to drive neoplastic events in the aging colon (28, 30, 
31) and mammary tissues (32). Furthermore, GH-induced 
IGF1 production is primarily observed in the hepatocytes of 
the liver, as well as in the adipose, bone, cartilage, and muscle 
tissues. In tumor cells, expression of GHR and IGF1 are not 
always correlated and vary with cancer types, species, and na-
ture of treatment (33). Importantly, age-associated, or 
DNA-damaging-therapy-induced nonpituitary GH produc-
tion in the periphery can itself enrich metastatic colonization. 
This was observed during increased pulmonary metastasis of 
GHR-positive B16F10 melanoma cells guided by increased 
GH production in the lungs of DJ1-knockout mice (34). 
Moreover, aside from the primary tumor site, tumoral GH 
production is maintained at secondary sites as well (35-37).

Beginning and End of GH Signaling
The GH molecule is an asymmetric ligand (2 different receptor 
binding sites: 1 and 2) that binds to a preformed GHR homo-
dimer in a 1:2 stoichiometry. A series of seminal work by 
Waters and colleagues have provided crucial details of 
GH-mediated GHR signaling (38). The human GHR (638 
amino acids) is a class I cytokine receptor with no intrinsic kin-
ase activity. However, kinases like JAK2 (39, 40) and SRC 
family kinase (SFK) LYN, associated at specific sites in the 
cytoplasmic domain of GHR, propagate kinase-dependent 
intracellular signaling following successful GHR activation 
by GH (41). Interestingly, JAK2 and LYN compete for GHR 
association and activation in a tissue-specific manner (42). 
GH-GHR-mediated JAK2 activation is known to trigger the 
STAT5 pathway as well as the PI3K/AKT/mTOR pathway 
via IRS1/2, the ERK1/2 pathway via the adaptors 
SHC-GRB2-SOS, and the 2 scaffold proteins signal regulatory 
protein α (SIRPα) and SH2B1 (43-46). However, GH-GHR 
mediated LYN activation does not phosphorylate the GHR, 
but rather activates the ERK1/2 pathway via phospholipase 
C-gamma (PLCγ) and phosphokinase C (PKC) (47) and also 
promotes nano-clustering of GHR at discrete areas of the 
membrane surface (42).

Termination of these GH promoting signaling cascades is 
tightly regulated by either deactivation or removal of the acti-
vated GHR. For GHR deactivation, a number of protein tyro-
sine phosphatases (PTPs), suppressor of cytokine signaling 
(SOCS) family proteins, and protein inhibitors of activated 
STATs (PIAS) work in tandem to remove the phosphate 
groups from GHR, JAK, STAT, and other phosphorylated sig-
nal transducers (45), resulting in a rapid termination and de-
sensitization of GH action, often via a PLCγ-dependent 
pathway (48). In the absence of GH, the cell-surface half-life 
of GHR is ∼30 to 60 minutes and is either: (i) cleaved (10% 
of total GHR) by metalloproteases; or (ii) internalized (75% 
of total GHR, truncated or intact, +/-ligand) following ubiqui-
tination and degraded. In the absence of GH, constitutive 
GHR ubiquitination is driven by the E3-ligase βTRCP, which 
is promoted significantly in the presence of GH by SOCS2 (46, 
49). Thus, the surface residence time of ligand-bound GHR is 
relatively short—approximately 5 to 10 minutes—prior to 
cleavage or endocytosis. Ligand-bound GHR is endocytosed, 
shunted toward lysosomal degradation, and in some cases, 

nuclear localized as well. This pattern of GHR turnover is rele-
vant to consider, as excess ligand may not simply lead to in-
creased GH action. Higher ligand concentrations can lead to 
temporary suppression of action due to lower membrane re-
tention of ligand-bound receptors. We encourage our readers 
to refer to recent excellent reviews for additional details of ac-
tivation, intracellular mediators, variation of surface expres-
sion of GHR depending on association with JAK2 vs LYN 
association (49), deactivation, and termination of GH signal-
ing distilled from hundreds of studies over the last 40 years 
since the identification of the GH-bound GHR crystal struc-
ture (44, 45, 49, 50).

Nuclear GHR Signaling—Intracrine Effect?
Multiple cancer-associated growth factors have shown 
ligand-activated nuclear translocation and possible intracrine 
effects, namely, epidermal growth factor receptor (EGFR) 
(51), IGF1R and insulin receptor (52) which promote tumor 
proliferation and metastasis. Subcellular GHR immunoreac-
tivity at the nucleus was first reported in cultured cells by 
Lobie and Waters in 1991 for rabbit GHR (53). Since then, 
a growing number of studies over the last > 30 years have pro-
vided traction to this concept. Nuclear GHR expression has 
been reported in a variety of cultured cells from rats, rabbits, 
and humans (54, 55), normal and pathological breast tissue 
(mastitis, fibroadenoma, papilloma, adenosis, epitheliosis, 
gynecomastia, carcinoma in situ, and invasive carcinoma) 
(56), human mesenchymal stem cells (57), as well as in mul-
tiple tissues from other cellular and animal models (58-62), 
and it commonly associates with elevated cell proliferation 
rates. Nuclear localization of GHR is also supported by the 
fact that almost half of intracellular JAK2 is nuclear localized 
(63). Furthermore, it was demonstrated that nuclear targeting 
of GHR in mouse pro-B Ba/F3 cells generated aggressive meta-
static tumors when implanted onto nude mice (64). In a recent 
elegant study, Perry and colleagues have shown that in human 
mammary and endometrial cancer cell lines, GH treatment 
leads to translocation of cell-surface GHR to the nucleus with-
in 5 to 10 minutes (65). Moreover, the nuclear GHR physical-
ly interacted with 40 novel proteins to regulate gene 
transcriptional patterns (65). Interestingly, multiple studies 
have reported that the GHR antagonist (GHRA) pegvisomant 
(the only FDA-approved peptide antagonist of GHR) discov-
ered and developed in our laboratory (66) can attenuate nu-
clear translocation of the GHR in transfected CHO cells 
(62, 67), and in human gastric cancer cells and xenografts 
(68). Overall, it is apparent that nuclear localized GHR is in-
dicative of potent cellular GH signaling, although it is uncon-
firmed whether GH acts here in an intracrine manner or if it is 
mostly nuclear transfer of surface GH-GHR. Further under-
standing of the commonality, specificity, and physiological 
and pathological impact of this phenomenon is crucial.

Promiscuity in GH Signaling
Interactions with prolactin receptor
Across species, mammalian GHs share 70% to 80% homology 
and marked amino acid sequence similarity. It is important to 
note that although human (and primate) GH can activate 
GHR across all mammalian species, non-primate GH cannot ac-
tivate primate GHR. This species specificity has been traced to a 
single amino acid interaction in primates—Arg43 of GHR with 
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Asp171 of GH. In the non-primates, Arg at position-43 of GHR 
is replaced by Leu, and Asp at position-171 of GH is replaced by 
His (69). This species specificity is an important factor when de-
signing in vitro and in vivo studies involving treatments of differ-
ent species of cells treated with different species of GH. This 
factor is further important as human tumors with human 
GHR xenografted in nude mice are not expected to respond 
to mouse GH, and in such cases either exogenously added (injec-
tions or pumps) or tumor-derived autocrine hGH can only acti-
vate the GHR. The human GHRA pegvisomant also binds 
poorly to the mouse GHR, and therefore must be used at 
much higher doses in mice (5-250 mg/kg/day) (70) than pre-
scribed in humans (10-30 mg/day = ∼0.1-0.4 mg/kg/day). 
Additionally, human GH displays receptor promiscuity by act-
ing as a potent activator of the prolactin (PRL) receptor 
(PRLR) (71, 72). This hGH-PRLR interaction is of paramount 
importance in highly incident and lethal types of cancers (eg, 
of breast and prostate), which have overexpression of PRLR, 
alongside an extrapituitary production of hGH in the epithe-
lium—thus setting up an autocrine/paracrine axis (73-76). 
Furthermore, Frank and colleagues have put forward evidence 
of hybrid multimeric receptors formed by homodimers of 
GHR and PRLR (77, 78). Such hybrid multimers can potentially 
set up a hyper-signaling cascade with hGH and have encouraged 
development of bispecific antibodies targeting such interactions 
in breast cancer (79).

Interactions with EGFR
An additional level of promiscuity in GH signaling is added by 
the interaction of activated GHR-associated kinases with oth-
er tumor-promoting signaling pathways (50). For example, in 
liver (in vivo and in vitro), following GH binding to GHR and 
transactivation, the GHR Box-1 associated kinase, JAK2, pro-
motes phosphorylation of EGFR/ERBB1 putatively at 
Tyr-1068, independent of the intrinsic receptor tyrosine kin-
ase activity of EGFR. This phosphorylated site on EGFR al-
lows docking of Grb2 leading to p42/44-MAPK (ERK1/2) 
pathway activation (80, 81). Frank and colleagues reported 
similar GHR-JAK2-mediated EGFR phosphorylation at spe-
cific serine/threonine residues (ERBB1 and ERBB2), causing 
reduction of EGF binding affinity. These receptor interactions 
appear to protect EGFR from “EGF induced degradation and 
downregulation, thereby potentiating EGFR signaling” (82- 
84). The GHR-JAK2-EGFR can lead to ERK1/2 activation 
and can be attenuated by MEK1 inhibitors (85). A similar 
role for PRLR in modulating EGFR signaling in normal and 
transformed cells is also known and could be induced by 
hGH (86-91). In agreement, total EGFR expression and 
downstream signaling were markedly suppressed in GHR 
knockout (GHRKO) mouse liver, while contrastingly, EGFR 
overexpression and higher basal signaling activity was ob-
served in the livers of bGH mice (92). The bGH mouse liver 
show increased Ser-1046/1047 phosphorylation, suppressing 
EGF-induced EGFR activation and possibly preventing 
EGFR internalization similar to that observed in preadipo-
cytes (93). Also, 5 weeks of GH treatment in young mice 
can increase hepatic EGFR expression compared to untreated 
controls (94). This hepatic EGFR modulation by chronic GH 
exposure coincides with increased spontaneous/ 
carcinogen-induced hepatic neoplasms observed in bGH 
mice and provides insight to GH’s contribution to the etiology 
of some cancers, especially liver cancer (95, 96).

Interactions with IGF1R
Frank and colleagues have also proposed the existence of an 
active GHR-JAK2-IGF1R complex in prostate cancer cell 
line, which can be disrupted by anti-GHR monoclonal anti-
bodies (mAb) (97). Recent elegant studies have further de-
scribed a complex of GHR-JAK2-STAT5B with the ephrin 
receptor tyrosine kinase EPH4 culminating in STAT5B activa-
tion and IGF1 production (98, 99). In fact, Eph4 deficiency in 
mice results in short stature and suppressed circulating IGF1 
levels despite GH and GHR expression (99).

Implicating GH in cancer automatically concerns the end- 
users of GH in treatments of endocrine deficits of GH. A rec-
ollection of the earliest work on GH and cancer by Evans and 
colleagues might offer a very important clue. They showed 
that following treatment with pituitary-derived GH, although 
numerous spontaneous neoplasms appeared in multiple tis-
sues of GH-sufficient normal rats (6-8), there was a lack of in-
creased tumors in the treated hypophysectomized rats (100). 
This might indicate that restoration of pituitary-derived/endo-
crine GH in GHD subjects may not promote tumorigenesis, 
unlike in a condition of GH excess.

Epidemiological Data on GH Deficiency/ 
Resistance/Excess and Cancer: Guilty 
by Association?
GH Deficiency and Resistance and Cancer
From the clinical point of view, one of the strongest indica-
tions for the involvement of the GH-IGF1 axis in carcinogen-
esis comes from the observation that individuals with total 
resistance to GH action due to inactivating mutations in the 
GHR (Laron syndrome, LS) and who also have high levels 
of inactive hGH and low to undetectable circulating levels 
of IGF1, do not develop cancer (101, 102). The high serum 
GH in LS, acting on the PRLR, does not lead to tumor devel-
opment, thus supporting that PRL action alone may not be 
oncogenic. Across 2 independent studies, Laron and col-
leagues have reported a complete absence of malignancies in 
a cohort of 169 and another of 230 LS patients, while an 
Ecuadorian cohort of 99 LS patients have reported only one 
death due to an ovarian malignancy compared to > 17% 
cancer-related deaths in relatives in long-term follow-up stud-
ies (reviewed in (102-104)). Multiple studies using lympho-
blastoid cells obtained from LS individuals, show a 
reduction of IGF1-RNA and proteins associated with cell pro-
liferation, progression, and motility, along with enhanced ex-
pression of genes associated with protection from oxidative 
and genotoxic insults (101). Importantly, despite concomitant 
presence of short stature and obesity, short individuals with 
LS have greater sensitivity to insulin than their unaffected rel-
atives due to a lack of GH’s diabetogenic effect (105). 
Moreover, their cells, or normal cells treated with LS serum, 
exhibited reduced DNA breaks and increased pro-apoptotic 
activities (102)—altogether revealing indications of an intrin-
sic resistance to mechanisms conducive to cellular transform-
ation due to congenital absence of GH action in human 
subjects.

In the well-studied Brazilian cohort of short stature subjects 
from Itabaianinha who carry mutations in the GHRHR gene 
and produce minimal amounts of GH and IGF1, the incidence 
of tumors is lower than in the general population, but not ab-
sent as in individuals with LS (106). GH treatment to restore 
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the endocrine deficit did not elevate the risk of cancer com-
pared to that in the general population—indicating limited 
role of endocrine GH in oncogenesis. Furthermore, a 
20-year follow-up study with another cohort of 25 patients 
(in the remote island of Krk in the Adriatic Sea) with congeni-
tal combined pituitary hormone deficiency arising due to 
loss-of-function mutations of the PROP1 gene (regulator of 
cellular differentiation during pituitary development) re-
ported no cases of malignancy along with absence of diabetes 
despite obesity (107). Similar reduction, but not complete ab-
sence of tumors, has been also observed in multiple other pop-
ulations with isolated or combined congenital GHD due to 
genetic or structural defects (103), suggesting that in suscep-
tible individuals, reduction of endocrine GH can lower the 
risks of tumor occurrence (106). These landmark clinical stud-
ies are compelling examples of suppressed malignancy stem-
ming from suppression of GH action and collectively imply 
that GH might be a critical factor in determining cancer risk.

Therefore, it is pertinent to ask whether patients with acro-
megaly do have an increased risk of cancer due to GH excess? 
And how is the cancer risk in GH-treated patients with GHD?

Acromegaly and Cancer
Assessment of the studies over the last 50 years on acromegaly 
and cancer lacks consensus. Therefore, we deem it critical to 
consider the following mechanistic reasons for the lack of a 
clear association between cancer incidence in patients with ac-
romegaly. For example: (i) excessive endocrine GH simultan-
eously stimulates the hepatic production of IGF1 and 
insulin-like growth factor binding protein 3 (IGFBP-3), 2 
forces that may act antagonistically in the mechanisms of tu-
mor development and progression; however, it is now known 
that in the tumor microenvironment (TME), GH-induced ma-
trix metalloproteases can cleave IGFBPs to increase the avail-
ability of free IGF (108, 109); (ii) normal pulsatile insulin 
signaling, which is required to maintain GHR expression levels 
in tissues (110-112), could be disrupted due to sustained diabe-
togenic action of chronically elevated GH (113, 114), leading 
to changes in GHR expression; and (iii) sustained presence of 
excess of GH is expected to decrease the membrane retention 
of GHR, which is internalized 2- to 3-fold faster in a ligand- 
bound state than when unbound (49). An additional caveat 
is that the assessment of cancer incidence in patients with acro-
megaly, most of whom may have undergone IGF1-normalizing 
treatments, may not be directly comparable to an untreated 
GH-transgenic laboratory animal. Untreated pediatric acro-
megaly patients have limited lifespan and often do not survive 
(due to cardiovascular, diabetic, and renal comorbidities) be-
yond middle age when cancer is more common. For example, 
as early as 1966, mortality rate in acromegaly was 50% by the 
age of 50 years and 89% by 60 years (115, 116). But in recent 
years, a decline has been observed in the overall mortality in ac-
romegaly related to better management of coexisting morbid-
ities and more effective therapies, resulting in higher frequency 
of patients with biochemically controlled disease (117, 118). 
Consequently, patients with controlled acromegaly now live 
longer and the increased longevity has been associated with a 
higher number of deaths due to age-related (but not 
GH-related) malignancies, as observed in individuals without 
acromegaly (118). Interestingly, a recent nationwide study 
from Italy, with 811 patients and a 15-year follow-up, infers 
that disease control does not prevent the increased mortality 

in the long term, and also reported cancer outweighing cardio-
vascular events as the leading cause of mortality (119). Most 
studies quantifying cancer rates in acromegaly include patients 
who have undergone some form of corrective treatment (eg, 
transsphenoidal surgery, radiation, somatostatin analogs, 
GHRA) toward the management of the GH excess. 
Therefore, despite differences in the degree of responses of 
the patients to IGF1-normalizing therapies, it may not be sur-
prising that standardized incidence ratios (SIR) of cancers in 
treated acromegaly patients are comparable to that of the gen-
eral population.

Despite all the aforementioned caveats, age-related cancers 
are currently one of the leading causes of mortality in patients 
with biochemically controlled acromegaly (103, 118). We 
have earlier reviewed that from 23 studies published in the 
60 years between 1957 and 2018, the mean cancer incidence 
in the acromegaly patients was found to be 9.6%, with re-
ported elevated SIR in a cancer type and cohort/country spe-
cific manner (reviewed in (103)). More recent studies, 
especially with long-term follow-up periods, do largely report 
increased SIR for multiple cancer types. For example, a na-
tionwide study from Sweden, which included 1296 patients 
with a median follow-up time of 11.7 years, found a 2-fold in-
crease in the risk of benign tumors and increased SIRs for 
overall and colorectal, anal, renal, and ureteral cancers 
(120). A more recent meta-analysis of 19 studies including 
11 494 patients also reported elevated SIR for overall and 
colorectal, anal, thyroid, brain, gastric, urinary, hematologic, 
pancreatic, and intestinal cancers (121).

It is important to indicate that the association of acromeg-
aly and cancer is more controversial particularly for 2 types 
of tumors—differentiated thyroid carcinoma (DTC) and colo-
rectal (CRC) carcinomas. In a published document from the 
Pituitary Society on acromegaly management, it was con-
cluded that the rate of DTC is not greater among acromegaly 
patients (117). In agreement with this statement, in a pro-
spective, cross-sectional study involving 71 patients with acro-
megaly and 57 with other pituitary tumors (control group) 
who were subjected to thyroid ultrasound and fine needle as-
piration biopsy when indicated, 2 cases of DTC were found in 
the control group and none in patients with acromegaly (122). 
Thus, the high prevalence of DTC observed in some studies 
may not be related to GH excess, but rather due to intensity 
of screening and detection of small, asymptomatic, low-risk, 
thyroid malignant nodules (117, 123). Regarding CRC, the 
recommendation from the Pituitary Society was to perform 
screening colonoscopy at diagnosis, with further testing 
done in the same way as indicated for the general population 
(117). It is important, however, to note that this statement was 
classified in the document as mainly based on a large series of 
small uncontrolled studies (117). In experimental models and 
as discussed later, the local GH rather than endocrine GH 
shows an IGF1-independent permissive role in changing the 
TME (124). Interestingly, CRC was reported as the predomin-
ant malignancy and main cause of death in adult patients with 
untreated GHD. Although this argues against participation of 
endocrine GH in colorectal carcinogenesis (125), nonpituitary 
colorectal GH production status was not measured in these 
studies and, therefore, a role of autocrine/paracrine GH in 
CRC cannot be eliminated. In addition, differences in age, 
as well as genetic/epigenetic, ethnic, economic, environmen-
tal, and dietary backgrounds, the presence of comorbidities, 
and more intense surveillance with colonoscopy, also 
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contribute to the conflicting findings among the studies (126). 
It is worth noting that the frequency of colonoscopy in pa-
tients with acromegaly does not seem to impact colorectal 
mortality rates (123).

Safety of GH Treatment
The wide availability of recombinant human GH (rhGH) has 
expanded its clinical prescriptions beyond replacement ther-
apy in children with GHD to those in which pharmacological 
dosages are used in non-GHD short children of different eti-
ologies, with approved indications varying from country to 
country. In adults, rhGH is indicated in persons with hypo-
pituitarism and severe GHD, which in many cases is caused 
by tumors in the hypothalamic-pituitary region. Of particular 
concern is the use of rhGH in patients harboring conditions 
associated with inherited risk of malignancies and neoplasms. 
With advances in oncological treatment, there has been a sub-
stantial increase in the number of cancer survivors who de-
velop GHD related to the malignancy or as an adverse 
consequence of surgeries, radiation, and immuno- and/or che-
motherapies (103, 127).

In 2021, the Growth Hormone Research Society organized 
a virtual workshop with 55 international key opinion leaders 
representing 10 professional societies to address the safety of 
rhGH therapy in survivors of cancer and intracranial tumors 
and in patients with cancer predisposition syndromes (128). 
The group concluded that associations between rhGH re-
placement therapy with primary tumor, cancer recurrence, 
and mortality from cancer in GHD survivors are not sup-
ported by present data and that the effects of rhGH replace-
ment on the risk of secondary neoplasia are of lesser 
magnitude compared to factors related to the host and the 
treatment of the adjacent tumor. In adult cancer survivors 
with GHD (either with childhood- or adult-onset cancer in re-
mission), rhGH should only be considered after careful indi-
vidual risk-benefit analysis and in agreement with the 
oncologist. The timing to start rhGH therapy following com-
pletion of oncological treatment should also be individualized 
and may be as early as 3 months in children with stable cranio-
pharyngiomas who have significant growth failure and meta-
bolic disturbances, and up to 5 years in adults with a history of 
solid malignancy, such as breast cancer. In addition, it was 
stated that rhGH is usually contraindicated in GHD children 
with cancer predisposition syndromes, but it may be cautious-
ly considered in particular cases (128).

However, conflicting data have recently been reported on 
the mortality risk related to rhGH therapy in high-risk popu-
lations. Two noninterventional studies from Novo Nordisk 
(NordiNet International Outcome Study [IOS]) and the 
American Norditropin Studies: Web-Enabled Research 
[ANSWER]) with 37 702 patients did not observe increased 
mortality related to rhGH treatment in patients categorized 
in low-, intermediate-, or high-risk groups (129). In contrast, 
the Safety and Appropriateness of Growth Hormone 
Treatments in Europe (SAGhE) study, with 24 232 patients 
treated with rhGH during childhood with up to 25 years of 
follow-up, observed an increased mortality associated with 
rhGH therapy in certain groups of patients with an inherent 
risk related to the underlying diagnosis (130). The treatment 
was considered safe in children with isolated GHD, idiopathic 
short stature, mild skeletal dysplasia, or born small for gesta-
tional age, but increased all-cause mortality was seen in 

patients classified as being at high risk, including individuals 
with severe cerebral and extracerebral malformation, severe 
chronic pediatric diseases, genetic disorders (neurofibroma-
tosis type 1, Turner syndrome, Noonan syndrome, and 
Prader-Willi syndrome), malignancies, and syndromes with 
known increased risk for cancer (Bloom syndrome, Fanconi 
syndrome, and Down syndrome and chromosomal breakage) 
(130). In elderly people with GHD, initial observations from 
the KIMS Database showed that adverse events related to glu-
cose metabolism, cardiovascular diseases, and neoplasms had 
higher prevalence in those older than 65 years (131). In con-
trast, more recent data collected from 2 observational, nonin-
terventional, multicenter registry studies of Novo Nordisk did 
not identify increased prevalence of cancer in GHD patients 
older than 60 years treated with rhGH, which was referred 
as a safe replacement therapy in these individuals (132). Of 
note, rhGH is contraindicated in any patient with GHD and 
active malignancy and should be discontinued if any clinically 
significant tumor progression or relapse is observed (128).

The above collection of data establishes a circumstantial as-
sociation between GH and cancer. Overall, the clinical evi-
dence concurs that cancer risks are marginally elevated in 
treated acromegaly patients, and not elevated in GH-treated 
GHD patients. We point out that the “treatments” in both 
cases are aimed at restoring serum hormones (IGF1 and/or 
GH) to age-adjusted normal ranges which should be physio-
logic rather than supraphysiologic in action and could well 
be the underlying reason. A careful analysis of the evidence 
thus raises the question whether the autocrine/paracrine ac-
tion of GH might be more relevant in the pathology of most 
of the cancers and is necessary to be distinguished from endo-
crine GH. To clarify this association further, in the following 
sections we will assess the empirical evidence and prognostic 
outcomes of GH signaling or its inhibition as studied directly 
in multiple human cancer types over time.

Empirical Data on GH and Cancer: Guilty 
by Evidence
In multiple different types of cancers which affect tens of mil-
lions of patients worldwide every year, the effects of primarily 
autocrine/paracrine and in some cases exogenous GH as well 
as the antagonism of the GHR, have been systematically stud-
ied using cultured cells, rodent models, human tissues, human 
patient transcriptomic data, and in some cases even in human 
patients (Fig. 2). In this regard, some of the most-studied are 
the cancers of breast, colorectum, liver, endometrium, and 
prostate, while compelling evidence has been accumulating 
in melanoma, stomach, lung, pancreas, bladder, central ner-
vous system (CNS), and multiple other cancer types, indicat-
ing that GH is a potent growth factor locally available in the 
TME with a consistent and versatile range of effects. We brief-
ly discuss these human cancers below, assimilating current in-
formation while indicating gaps in knowledge in provocative 
research areas.

Breast Cancer
The highest number of empirical studies in GH and cancer ex-
ist in the field of breast cancer (BC), which is reinforced by the 
fact that an analysis of the GWAS data from the National 
Cancer Institute (NCI) Cancer Genetic Markers of 
Susceptibility project (1145 cases, 1142 controls) published 
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in 2010, ranked the GH signaling pathway as one of the top 3 
pathways (out of 421 involving 3962 genes) associated with 
BC (133). Alongside ovarian-derived estrogen and progester-
one, pituitary hormones like GH and PRL are known to or-
chestrate normal breast tissue differentiation, development, 
and also lactogenic functionalities (22, 134-140). 
Interestingly, hypophysectomy was used as a treatment for 
BC beginning in the early 1950s, and impressive remission 
rates were reported (134, 141, 142). Numerous reports con-
firm high expression of GHR in normal mammary tissue and 
BC cell lines (56, 143, 144). GHR expression is prominently 
observed in both epithelial and stromal components of BC 
lymph node metastases (144), in estrogen receptor 
(ER)-negative BC cell lines, BC tissue samples, and patient- 
derived primary cell lines (145). Additionally, GH mRNA ex-
pression is found in both the normal mammary gland (luminal 
epithelial cells, ductal myoepithelial cells, stromal fibroblasts) 
and in both the stromal and epithelial compartments in pro-
gressive proliferative disorders of human mammary gland: be-
nign fibroadenoma, pre-invasive intraductal carcinoma, and 
invasive ductal carcinoma (35). Additionally, patient-derived 
human mammary cancer cells in culture were found to express 
GHR in 100% and GH in 52% of the total isolates (146). The 
co-expression of GH and GHR in normal mammary tissues 
and upregulation during development of proliferative lesions 

and in malignancy suggests a putative causal role of auto-
crine/paracrine rather than endocrine GH action in mammary 
carcinogenesis (147).

The synthesis and action of GH in mammary cells was out-
lined in dogs, cats, and humans by Rijnberk and colleagues in 
1996. This nonpituitary GH is under progesterone induction 
in normal mammary cells (148, 149), although following 
malignancy, GH production in BC cells can be 
progestin-independent, because GH mRNA has been detected 
in progesterone receptor (PR)-negative canine (150) and hu-
man BC tissue samples (21). Moreover, progesterone treat-
ment does not induce GH production in canine mammary 
tumor cells (151), although some PR-positive human breast 
explants can reportedly produce GH (as well as PRL and 
IGF1) under progesterone stimulation (152, 153). Lobie’s 
group exemplified this by expressing human GH in immortal-
ized human mammary epithelial cells, which was sufficient for 
oncogenic transformation and in vivo tumorigenic capacity 
(154) and confirmed by additional independent studies to be 
oncogenic in abetting neoplastic transformation of mammary 
ductal cells (32, 155). Autocrine GH expression in several 
ER-positive, ER-negative, and triple-negative BC cells have 
shown similar phenotypes of invasive growth, increased prolif-
eration, therapy (chemo- and radiation) resistance, and inhib-
ition of apoptosis (145, 156-165). The GHR antagonist B2036 

A DB

F

C

E

Figure 2. Materials and methods in the study of GH action in cancer. Collectively, the numerous studies in GH and cancer have made use of the following 
approaches: (A) human and mouse cancer cell lines and organoids; (B) patient-derived tumor biopsy/dissected tumor sample either subjected to high-throughput 
sequencing (mutations, copy-number, or RNA transcripts) or immunohistochemistry (protein expression) or primary culture or organoids (or can be xenografted 
in immunocompromised mice); (C) human tumors xenografted onto the flanks of athymic nude mice and treated with blockers of GH action (eg, GHR 
antagonist); (D) GH-deficient dwarf Sprague Dawley rat (SDR) or hypophysectomized vs corresponding control rats of Wistar type; (E) Syngeneic (same species) 
mouse tumors (either allografted or carcinogen-induced) in the C57BL6 strain of laboratory mice. This strain and model can be employed for assessment of 
multiple mouse models of GH action with varying levels of serum GH and IGF1. (F) Distribution of published studies implicating GH in different cancer types using 
the different methodologies. *Mouse models generated in Kopchick laboratory, Edison Biotechnology Institute, Ohio University, Athens, Ohio. 
Abbreviations: Ames, PROP1 null (deficient in pituitary GH, PRL, TSH); bGH, bovine GH transgenic; GHA, bovine GH antagonist transgenic; GHRKO, GHR knockout; GHKO, GH 
knockout; inducible GHRKO, postnatal GHR knockout by tamoxifen induction at 6 weeks or 6 months of age; lit/lit, GHRHR knockout; Snell = PIT1 null (deficient in pituitary GH, 
PRL, TSH).
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(core peptide of pegvisomant) successfully attenuated auto-
crine GH-induced anti-apoptotic effects in BC cells (156- 
158). Also, the role of PRL in human BC has been known since 
the 1960s (166), and although PRLR is expressed in 70% of 
BC biopsies and cell lines (167), the GH-PRLR interaction in 
BC (74) still remains highly understudied. In response to hu-
man GH and/or PRL, specific morphological changes associ-
ated with epithelial-to-mesenchymal transition (EMT), along 
with a 2-fold increased accumulation of “intracytoplasmic lip-
id droplets,” was observed in human T47D BC cells (168). 
Notably, the PRL-PRLR signaling is important in BC due to 
high PRLR in the mammary tissue and has been well-described 
by expert reviews (169-174).

Childbearing or parity affects breast cancer risks in rodents 
(175, 176), and also results in decreased circulating GH levels 
compared to virgin control animals (175), which appears to 
protect these animals from chemically induced mammary tu-
mor development (177-179). Moreover, treatment of parous 
rats with 17-β-estradiol, but not progesterone, increased cir-
culating GH levels, and increased N-methyl-N-nitrosourea 
(MNU)-induced mammary tumor incidence from 10% in un-
treated to 67% in estradiol-treated animals (180). In mice, 
transgenic expression of both bGH and hGH led to mammary 
hyperplasia, which proceeded to neoplasia only in case of 
hGH transgenic animals (155). Multiple other rodent models, 
including mouse models of varying GH/IGF1 signaling show a 
consistent tumor-promoting action of GH, which can be sup-
pressed by attenuation by either discontinuation of GH ad-
ministration, or congenital absence of GH or GHR, or use 
of GHR antagonists and have been extensively reviewed 
(33, 70, 103, 134, 155, 181, 182). Table 1 provides a compre-
hensive listing of the empirical evidence in this area. We high-
light some notable examples of GH’s more recent association 
with therapy resistance. For example, a cohort of 
MNU-treated Sprague Dawley rats (SDR) were also treated 
with GH and following tumor establishment, GH treatment 
was withdrawn in one group, and doxorubicin treatment 
was initiated. The GH-treated SDR were found to be marked-
ly less responsive to the chemotherapy compared to 
GH-withdrawn SDR (198), indicating an association of GH 
with chemoresistance in cancer therapy, which has also been 
reported in multiple studies in other cancers by our group 
and others (204).

Mouse models of congenital GH insensitivity (GHRKO 
mice) developed by our laboratory (205), modeling conditions 
of LS, were crossed with C3(1)/Tag mice which spontaneously 
develop mammary neoplasms due to expression of the SV40 
large T-antigen (206). The tumor burden in the Tag/ 
GHRKO mice was 3 per animal, compared to 10 in the Tag/ 
wild-type counterparts (199). Moreover, tumor sizes in the 
Tag/GHRKO females were 10 times smaller than that in the 
Tag/wild-type females. In a similar Tag/ind-GHRKO model, 
developed by crossing C3(1)/Tag mice with 
tamoxifen-inducible-GHRKO mice (developed at our lab 
(207),), Ghr was ablated after tumor development (200). 
Ghr null mice showed regression of tumor growth and re-
duced cell proliferation in tumors compared to control ani-
mals. Another unique mouse model, GHRA transgenic mice 
(GHA) also developed in our laboratory (208), as well as 
the adult-onset GH-deficient (GHD) mice, when treated 
with dimethylbenzanthracine (DMBA), resulted in significant-
ly lower mammary tumor frequency, size, and burden com-
pared to wild-type littermates (201, 202). Arumugam et al 

implanted patient-derived ER-negative primary BC cells 
with shRNA-mediated GHR knockdown in nude mice. 
These GHR-deficient xenografts had a markedly reduced 
growth rate and improved response to docetaxel, again valid-
ating the chemosensitizing effect of GHR attenuation (145).

Does the collection of the above studies align with progno-
ses of actual patients with BC in the clinic? Assessment of re-
sults in human BC samples seem to affirm this supposition. 
For example, histopathological analysis of 157 mammary 
cancer patients and 33 benign breast disease patients shows 
that, in the cancer samples, 53% were positive for GH and 
68% were positive for PRL expression, compared to 30% 
and 27%, respectively in noncancer samples (183). 
Additionally, Kaplan-Meier (KM) and Cox regression ana-
lyses showed that tumor GH expression was significantly as-
sociated with poorer relapse-free survival (RFS) and overall 
survival (OS) in the BC patients, with the worse correlation 
for patients with tumors expressing both GH and PRL 
(183). Histochemical analysis of 47 BC patient samples in-
ferred that GHR was enriched in ER-negative subtypes 
(145). In validation, in 671 ER-negative BC patients, higher 
GHR mRNA expression correlated with significantly poorer 
survival probability compared to patients with lower GHR 
expression (145). The GHR-associated poor survival prob-
ability further deteriorated in the chemotherapy-treated 
group, validating the chemorefractory effect of GH (145). 
We also used the KMplotter platform to assess GHR expres-
sion association with OS and RFS in > 5000 patient samples 
spanning 55 datasets (209). Our analysis additionally found 
that GHR expression significantly correlates with poorer OS 
and RFS in patients with triple-negative BC (TNBC) with al-
most 1.5-fold difference in survival (in months), and with 
worse outcomes in chemotherapy-treated groups 
(Fig. 3A-3D). Therefore, GHR can be posited as a clinically 
relevant target in TNBC, which is provocative given the 
high mortality and paucity of therapeutic targets in TNBC, 
and thus demands necessary attention for therapeutic devel-
opment. The GHR-associated poor survival outcome is also 
observed in HER2-enriched BC (Fig. 3E), but no significant 
correlation is observed for GHR expression and survival in 
ER-positive or PR-positive BC groups (not shown here). 
Interestingly, GHR as a prognostic marker in HER2 enriched 
BC patient group appears to support the concept that cross-
talk of GHR and EGF receptors described by Frank and col-
leagues (discussed above) may be clinically relevant.

Liver Cancer
The normal liver presents the highest surface expression of 
GHR between different organ systems, where GH action on 
hepatocytes induces the production of > 75% of the circulat-
ing IGF1. Notably, although the normal liver has very low 
IGF1R expression, in hepatocellular carcinoma (HCC), the 
major form of liver cancer, overexpression of IGF1R is con-
sistently observed (210). Therefore, endocrine GH–driven 
IGF1 production renders a robust autocrine/paracrine effect 
on liver tumor cells (210, 211). Interestingly, GHR expression 
in HCC is less consistent, as several studies have reported a 
lower GHR expression in human HCC tumor vs normal liver 
tissues, particularly in hepatitis C virus (HCV)-related HCC, 
whereas survival studies in patients indicate that lower GHR 
expression correlates with poorer prognoses (212-221). 
However, this does not diminish the fact that autocrine/ 
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Table 1. Studies implicating growth hormone in breast cancer

Material Method Study summary Reference

normal mammary epithelial 
cell

autocrine GH oncogenic transformation and in vivo tumor growth (32, 154, 155)

BC cell lines, patient samples RNA and protein GH and GHR expression (21, 35, 56, 143-146, 
150-153)

patient samples IHC for GHR enriched in ER− BC samples (145)
patient samples IHC for GH, clinical correlation GH overexpression in cancer tissue, correlates with poorer 

survival
(183)

patient sample protein expression tumor GHR expression correlates with aggressive metastasis (144)
patient sample—IHC correlation with tumor GH 

expression
tumor GH expression correlates with lymph node metastasis, 

tumor grade
(183)

autocrine GH in cell line,  
patient sample-RNA

RNA expression autocrine GH expression intact in metastatic tumors (35, 36)

patient data GWAS data analyses GH signaling pathway—one of top 3 pathways associated 
with BC

(133)

human patients hypophysectomy high rate of remission (134, 141, 142)
BC cell lines autocrine GH increases proliferation (146, 156, 158)
MCF7 cell line autocrine GH inhibits growth suppressors (184)
MCF7 cell line autocrine GH resistance to chemotherapy (doxorubicin) induced apoptosis (185)
MCF7 cell line autocrine GH increases DDR and resistance to starvation induced apoptosis (156, 157, 186)
MCF7-hGH cells GHRA (B2036) treatment increases starvation induced apoptosis (157)
BC cells autocrine GH resistance to starvation induced apoptosis (187)
BC cells autocrine GH resistance to radiotherapy induced apoptosis (188)
BC cells autocrine GH resistance to chemotherapy (MMC, doxorubicin, cisplatin) 

induced apoptosis
(162, 189)

BC cells autocrine GH resistance to oxidative stress induced apoptosis (190)
ER+ and TNBC cells autocrine GH resistance to chemotherapy (MMC) induced apoptosis (162)
ER+ and TNBC cells autocrine GH + GHRA (B2036) 

treatment
sensitized to radiotherapy induced apoptosis (188)

ER+ and TNBC cells exogenous GH + GHRA 
(pegvisomant) treatment

sensitized to chemotherapy (doxorubicin) induced apoptosis (160, 163)

patient-derived primary cells anti-GHR shRNA decreases cell viability, drug efflux, sensitized to chemotherapy 
(docetaxel) induced apoptosis

(145)

multiple BC cell types autocrine GH induces EMT, promotes migration-invasion (36, 159, 161, 168)
BC cell line autocrine GH promotes DNA methylation, EMT induction (191)
multiple BC cell types orthotopic xenograft—nude mice EMT induction, metastasis, ECM remodeling, stromal 

fibrosis
(36, 159, 161)

ER− BC cell xenograft in nude 
mice

autocrine GH higher rate of invasion and metastases (162, 188)

nude mouse xenograft GHRA (B2036) treatment sensitized to MMC induced apoptosis (162)
T47D xenografts—nude mice treated with GH tumor proliferation, potentiation of estrogen effect (192, 193)
TNBC cell lines autocrine GH resistance to tamoxifen, curcumin induced apoptosis (164, 165)
estradiol-treated parous rats +  

MNU
increased serum GH increased rate of tumorigenesis (180)

control vs SDR DMBA or MNU treatment lower tumor incidence and size in SDR (194)
SDR + GH DMBA treatment increased tumor incidence (195, 196)
tumor bearing SDR + GH GH withdrawal tumor regression (197)
SDR + GH + doxorubicin GH withdrawal sensitized to doxorubicin induced apoptosis (198)
hGH/bGH transgenic mice changes in mammary tissue neoplasia (only for hGH transgenic, not oGH or bGH) (155)
C3(1)/Tag mice crossed with GHRKO mice GHRKO-Tag mice—suppressed tumor incidence and tumor 

size
(199)

C3(1)/Tag mice crossed with inducible-GHRKO 
mice

ind-GHRKO-Tag mice—tumor growth regression (200)

DMBA treatment GHA vs control mice lower tumor incidence, size, and burden (201)
DMBA treatment AOiGHD vs control mice lower tumor incidence, size, and burden (202)

(continued)
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paracrine GH action in the liver tissues is a major contributor 
to neoplastic development in the liver, as indicated by the fol-
lowing findings.

Parallel to a decrease in GHR, the expression of nonpituitary 
GH in the liver is significantly ramped up in HCC, as corrobo-
rated repeatedly by studies since the 1960s. For example, tumor-
al expression (mRNA and protein) of hGH alone or hGH and 
PRL both were significantly associated with poorer RFS in 

HCC patients and expression of both genes were significantly in-
creased in neoplastic vs normal tissues (222). Unlike in case of 
PRL, GH being a ligand for both GHR and PRLR, appeared 
to have a more consistent correlation in patients and models 
of HCC. Moreover, G120K-hGH which can antagonize both 
GHR and PRLR activation, was successful in blocking the 
STAT3 signaling mediated growth of xenograft tumors with 
autocrine GH and PRL expression in mice. Moreover, human 

Table 1. Continued

Material Method Study summary Reference

MCF7 xenograft in nude mice GHRA (pegvisomant) treatment reduced proliferation, increased apoptosis, reduced tumor 
growth

(162, 163, 203)

ER− primary cell xenograft in 
nude mice

GHR knockdown cells reduced tumor growth, sensitized to docetaxel induced 
apoptosis

(145)

Abbreviations: AOiGHD, adult-onset isolated growth hormone deficiency; BC, breast cancer; DDR, DNA damage repair; DMBA, dimethylbenzanthracene; ECM, 
extracellular matrix; EMT, epithelial-to-mesenchymal transition; ER, estrogen receptor; GH, growth hormone; GHA mice, mice transgenic for growth hormone 
receptor antagonist; GHR, growth hormone receptor; GHRA, growth hormone receptor antagonist; GWAS, genome-wide association study; IHC, 
immunohistochemistry; MMC, mitomycin C; MNU, N-methyl-N-nitrosourea; SDR, Sprague Dawley rats; TNBC, triple-negative breast cancer.

Figure 3. GHR expression negatively correlates with overall survival (OS) and relapse-free survival (RFS) in triple-negative and HER2-enriched breast 
cancer. KMplotter generated survival probability of breast cancer (BC) patients with low or high GHR expression. (A) OS in patients with triple-negative 
(ER-PR-HER2-) BC (n = 405); (B) OS in patients with triple-negative BC who underwent chemotherapy (n = 227); (C) RFS in patients with triple-negative 
BC (n = 392); (D) RFS patients with HER2-enriched (ER-PR-HER2+) BC who underwent chemotherapy (n = 232); (E) OS in patients with HER2-enriched 
(ER-PR-HER2+) BC (n = 96).
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HCC cell lines transfected with GH led to increased IGF1 and 
IGF2 expression and promoted xenograft growth in nude 
mice, and this was inhibited by hGH-G120R treatment. GH 
overexpression also correlates with tumor size, grade, and worse 
OS and RFS in HCC patients (222). In rodent models, increased 
GH (exogenous or congenital) promotes chemically induced 
hepato-carcinogenesis, exemplified by: (i) GH administration 
in N-2-fluorenyldiactemaide-treated AxC rats (223); (ii) GH in-
fusion in diethylnitrosamine (DEN)-treated Wistar rats (224); 
and (iii) DEN treatment in neonatal ovine GH transgenic mice 
compared to nontransgenic controls (225). Contrastingly, 
mouse models with attenuated GH action show compelling evi-
dence of suppression of chemically induced hepatocarcinogene-
sis as seen in (i) DEN treatment in the GH-deficient lit/lit 
(GHRHR mutant) mice (226); (ii) DEN treatment in GHRKO 
vs littermate controls (tumor incidence 5.6% vs 93.5%) (227); 
and (iii) DEN treatment in liver-specific GHR null mice com-
pared to controls (227).

In humans, 49.5% (380/767) of HCC patients had in-
creased tumoral GH expression, which correlated with signifi-
cantly shorter OS in both males and females (228). 
Additionally, several studies in GH (ovine or bovine or mouse) 
transgenic mice have shown that hyperplasia and hypertrophy 

precede age-associated hepatocarcinogenesis in these animals 
(more in male than female mice, similar to incidence rates ob-
served in humans) (95, 229-236) and are listed in Table 2. This 
hepatomegaly in GH transgenic mice is mostly a function of 
amplified GH and associated inflammatory changes (dis-
cussed later), so high incidence of hepatocarcinogenesis is 
not observed in the IGF1 transgenic mice (230). Additional 
factors may include GH-regulated sustained activation of in-
flammatory pathways in the liver (discussed below), stabiliza-
tion of hepatic EGFR levels and signaling (92, 96) (discussed 
above), as well as activation of protumorigenic factors like 
galectin-1 (239), c-myc, c-jun, c-fos, AKT, NFκB, GSK3β, 
PCNA, cyclin-D1, and cyclin-E (95, 236). In comparison, con-
genital as well as inducible GHRKO mice show markedly de-
creased hepatocarcinogenesis compared to respective controls 
(J.K., personal communication). Notably, while several stud-
ies have reported that excess GH action increases 
fibrosis-associated amino acid hydroxyproline in the AT, the 
same in liver has not yet been determined, while upregulated 
fibrosis has been reported in small intestine, heart, kidney, 
and tibial articular cartilages of bGH transgenic mice (240). 
This should be investigated, as hydroxyproline levels meas-
ured in liver biopsies correlate positively with HCC in 

Table 2. Studies implicating growth hormone in liver cancer

Material Method Study summary Reference

normal liver tissue RNA and protein High GHR expression, very low GH expression (210)
patient samples RNA and protein GH overexpression in ∼50% samples, (228)
HCC cell lines, patient samples RNA and protein, clinical 

correlations
GH expression increased compared to normal liver, higher GH 

correlates with poorer survival
(222)

HCC cell lines, patient samples RNA and protein, clinical 
correlations

GHR expression is decreased compared to normal liver, lower GHR 
correlates with poorer survival

(212-218, 
220)

human cell lines autocrine GH increased proliferation (95, 237)
cell line with autocrine GH nude mice xenograft increased tumor growth in vivo (222)
human cell lines autocrine GH induces EMT, promotes migration-invasion, metastasis (237)
human and mouse cell lines exogenous GH +/− GHR 

knockdown
increased ABC transporters and drug efflux, resistance to 

doxorubicin and sorafenib
(211)

AxC rats + hepatocarcinogen GH administration increase in liver tumorigenesis (223)
Wistar rats + hepatocarcinogen GH infusion increase in liver tumorigenesis (224)
GH transgenic animals liver pathology hyperplasia, hypertrophy, age-associated hepatocarcinogenesis (95, 229- 

236)
ovine GH transgenic vs control 

mice
+ hepatocarcinogen increase in liver tumorigenesis (225)

lit/lit vs control mice + hepatocarcinogen decrease in liver tumorigenesis and growth (226)
GHRKO vs control mice + hepatocarcinogen decrease in liver tumorigenesis and growth (227)
liver-GHRKO vs control mice + hepatocarcinogen decrease in liver tumorigenesis and growth (227)
GHA mice syngeneic allograft increased ABC transporters, resistance to targeted therapy 

(sorafenib)
(211)

cell line with autocrine GH in 
nude mice

GHRA (hGH-G120R) treatment suppressed tumor growth in vivo (222)

human xenograft in nude mice +  
sorafenib

+ pegvisomant pegvisomant improves sorafenib efficacy (228)

mouse allograft in GHA vs 
control mice

+ sorafenib transgenic GHR antagonist improves sorafenib efficacy (211)

human HCC patients +  
sorafenib

+ pegvisomant disease stabilization (228)

human HCC patients +  
immunotherapy

correlation of serum GH— 
treatment response

high serum GH correlates with poorer immunotherapy response and 
survival

(238)

Abbreviations: GH, growth hormone; GHA mice, mice transgenic for growth hormone receptor antagonist; GHR, growth hormone receptor; GHRA, growth hormone 
receptor antagonist; HCC, hepatocellular carcinoma.
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nonalcoholic steatohepatitis (NASH) mouse models (241). 
Furthermore, in case of disease prognoses, the clinical rele-
vance of targeting GH action was highlighted by multiple in-
dependent studies by us and others, where either pegvisomant 
treatment markedly increases sorafenib efficacy in nude mice 
with HCC xenografts (228), or GHA mice with syngeneic 
Hepa1-6 allografts show significantly higher response to sor-
afenib compared to wild-type controls (211). Given that 
IGF1R signaling is activated robustly in HCC, it is relevant 
to mention here that pegvisomant decreases circulating levels 
of both ligands of IGF1R—IGF1 and IGF2—to the same ex-
tent, as observed in healthy human volunteers as found in a 
Pfizer clinical trial (242). Recently, Amin and colleagues at 
the MD Anderson Cancer Center highlighted the real-world 
therapeutic potential of attenuating GH action when they 
treated 2 HCC patients, who presented with high plasma 
GH and sorafenib resistance, with pegvisomant (228). 
Treatment with 10 mg/day of pegvisomant along with sorafe-
nib induced tumor stability in both, along with 40% reduction 
in the tumor prognosis marker α-fetoprotein (AFP) levels in 
one patient. The same group also hinted at the association 
of upregulated serum GH levels with significantly poorer re-
sponse to the atezolizumab (anti-PDL1 [programmed cell 
death ligand 1])-bevacizumab (anti-VEGFA [vascular endo-
thelial growth factor A]) regimen and correlates with de-
creased OS in 37 HCC patients (238).

Colorectal Cancer
GHR is overexpressed in colorectal neoplasms compared to 
adjacent nonneoplastic cells. Peripheral GH action was re-
ported to be implicated in colorectal malignancies as early 
as 2000 (243). Assessments from studies using patient samples 
of colorectal carcinoma (CRC) and normal colorectal mucous 
membrane show that GHR protein and RNA is present in 
83% to 100% and overexpressed in > 69% of the CRC 

samples compared to significantly weaker expression in the 
normal mucosa (244-246). Moreover, the single nucleotide 
polymorphism (SNP) T1663A; rs2665802 in the human 
GH1 gene, which is associated with reduced circulating GH 
and IGF1 (247), also correlates with a significantly reduced 
risk of CRC (248-250). In the laboratory, early in vitro studies 
report that both GH and IGF1 attenuates PPARγ-induced 
apoptosis in human colon cancer cell lines (251), and IGF1 
also has a well-studied promoting effect in CRC (252). 
However, multiple rodent models (Table 3) affirm that GH 
can promote CRC incidence and progression in an 
IGF1-independent manner. For example, in response to treat-
ment with the colon-specific carcinogen azoxymethane, male 
LID mice (serum IGF1 reduced by 70% due to liver-specific 
Igf1 deletion) had no difference in the development of aber-
rant crypt foci (ACF), tumor incidence, or tumor multiplicity, 
but they had a 25% reduction in tumor volume compared to 
wild-type animals (261). This highlighted that IGF1 could be a 
promoter of proliferative growth in CRC, rather than a causa-
tive factor. On the other hand, treatment with GHR-targeted 
siRNA in nude mice bearing human SW480 cell xenografts 
suppressed postinoculation increase in tumor volume (262) 
and also reduced the rate of liver metastasis (259), while im-
proving the efficacy of chemotherapeutic 5-fluorouracil 
(5FU) treatment. In cell-based studies, autocrine/paracrine 
GH action has been shown to promote colonic neoplasms, 
in an IGF1-independent manner (30, 124).

CRC is one of the best validated examples of the oncogenic 
role of peripheral GH with autocrine/paracrine action and 
highlights the nonsignificant role of endocrine GH in this can-
cer. In that regard, an extensive series of studies by 
Chesnokova and Melmed has highlighted the genomic in-
stability promoted by colon-derived GH on the etiology of 
neoplasms in the aging colon (30). Unlike endocrine GH, 
the local production of nonpituitary GH was found to in-
crease in the aging colon and promoted accumulation of 

Table 3. Studies implicating growth hormone in colorectal cancer

Material Method Study summary Reference

patient samples IHC GHR overexpression in tumor vs normal colon tissue (243-246)
patient sample—IHC correlation with tumor GH 

expression
tumor GH expression correlates with lymph node metastasis, tumor 

grade
(253)

patient samples (pre- and 
post-radiotherapy)

RNA and protein GHR levels increased post-treatment, pretreatment GHR correlate 
with poorer therapy response

(254, 255)

SNP: T1663A in GH1 gene correlation study reduced risk of CRC (248-250)
colon cell lines, PSC-derived 

organoids
Exogenous or autocrine GH reduces apoptosis, inhibits growth suppressors (PTEN, APC), 

induces EMT
(30)

colon cell lines, PSC-derived 
organoids

autocrine/paracrine GH promotes oncogenic transformation (31, 256, 
257)

cell lines autocrine GH increased proliferation (253)
CRC cell lines GH treatment resistance to radiotherapy induced apoptosis (258)
CRC cell lines exogenous GH GH attenuates PPARγ-induced apoptosis (251)
CRC cell lines autocrine GH induces EMT, promotes migration-invasion (253)
nude mice xenograft anti-GHR siRNA reduced tumor volume, decreased metastasis, increased response to 

5FU
(259)

APC(min+/−) mice crossed with GHD Ames (Prop1 
−/−) mice

Ames-APC(min+/−) cohort: reduced tumor incidence, burden, 
growth

(30)

patient serum sample radioimmunoassay for GH serum GH significantly higher than normal (260)

Abbreviations: 5FU, 5-fluorouracil; CRC, colorectal carcinoma; EMT, epithelial-to-mesenchymal transition; GH, growth hormone; GHD, growth hormone deficient; 
GHR, growth hormone receptor; IHC, immunohistochemistry; PSC, pluripotent stem cell.
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DNA damage in the normal cells, eliciting an effect which pro-
motes neoplastic transformation (31, 256, 257). However, 
following transformation, both GH and IGF1 signaling in tu-
mor cells appears to contrastingly promote DNA damage re-
pair (DDR) pathways, ensuring tumor recovery and survival 
from DNA-damaging treatments like radiation and chemo-
therapy (263). In agreement, 9-month-old progeny of GHD 
Ames mice crossed with intestinal tumor-prone APC(min+/-) 
mice, had significantly reduced tumor incidence, burden, 
and growth compared to GH-sufficient APC(min+/−) controls 
(30). Provocative associations of GH action with clinical out-
comes in CRC are also numerous. Notably, an early compari-
son of pre- and post-irradiation specimens of 98 rectal cancer 
patients show marked increase in tumoral GHR expression 
following radiotherapy as well as poorer response to irradi-
ation correlating with higher pretreatment GHR levels 
(254,255). Similar observations were noted more recently 
for tumoral IGF1R expression as well (264). Recent reviews 
have additionally discussed the current knowledge in 

GH-associated tumor promotion and therapy-refractoriness 
in human CRC (102, 182, 204). Analyzing human patient sur-
vival data using the KMplotter platform, we find that a tumor-
al GHR expression does indeed correlate significantly with 
poorer OS and RFS in patients with colon cancer. The hazard 
ratios increased in the groups of patients treated with chemo-
therapy, with an almost 2-fold difference in survival (in 
months) between high and low GH expression groups 
(Fig. 4). Studies in GH and CRC are exemplary in the import-
ance of focusing on age-associated peripheral GH production 
and its implications in cancer in different tissues and organ 
systems, as well as in other organ-specific pathologies.

Prostate Cancer
More than 20 years ago, Barkey and colleagues had demon-
strated expression of GHR in human prostate cancer (PC; pri-
mary tissues and cell lines), with almost 80% higher GHR 
expression level in the carcinoma tissues than in the benign 

Figure 4. GHR expression negatively correlates with overall survival (OS) and relapse-free survival (RFS) in colon cancer. KMplotter generated survival 
probability of colon cancer (CC) patients with low or high GHR expression. (A) OS in all patients with CC (n = 961); (B) RFS in patients with CC (n = 1336); 
(C) OS in patients with CC who underwent chemotherapy (n = 256); (D) RFS in patients with CC who underwent chemotherapy (n = 278).
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hyperplasia (265), while case-control studies note a marginal 
(< 10%) rise in serum IGF1 in PC patients (266). In PC, the 
GHR aside from classical signaling pathways also shared 
intracellular crosstalk with androgen signaling. For example, 
GH affected a rapid but transient (2-12 hours) upregulation 
(∼5-fold) of the prostatic androgen receptors (265), while 
prostatic GHR isoform expression appeared to be androgen- 
dependent (267). Moreover, in androgen-dependent LNCaP 
cells, GH stimulated IGF1 (and IGF1R) expression, while in 
androgen-insensitive PC3 cells, GH stimulated IGF2 (and in-
hibited IGF1R) expression (268). Swanson and colleagues em-
ployed the C3(1)/Tag mouse crossed with the GHRKO mouse 
in PC studies (269). The Tag expression is driven by the regu-
latory region of rat prostate-specific steroid binding protein 
C3(1) gene, which lead to all male mice spontaneously devel-
oping prostate cancer. Importantly, in the Tag/GHRKO pro-
genies dissected at 9 months of age, only 1/7 mice had 
prostatic intraepithelial neoplasms, compared to 7/8 in the 
GHR-sufficient control Tag mice. Moreover, the prostate epi-
thelium in the Tag/GHRKO animals present reduced prolifer-
ation and increased apoptosis. Likewise, experiments 
conducted using a tamoxifen-inducible prostate-specific 
GHR-deleted mice strain yielded similar results, showing 
markedly reduced prostatic intraepithelial neoplasms and re-
duced epithelial stratification and proliferation in the 
6-month-old animals (270). On the other hand, orthotopic 
implant of GHR overexpressed murine PC showed an in-
creased xenograft size and weight (270). In another animal 
model, Probasin/Tag rats, which develop PC by 15 weeks of 
age (271), were crossed with SDR animals. At 25 weeks of 
age, despite identical expression of the T-antigen in the pros-
tate, the majority of the Tag/SDR rats lacked invasive carcin-
omas, compared with 100% in Tag controls (272). The results 
appear to be IGF1-independent, as in the GH-sufficient rats, 
prostate IGF1R protein levels decreased and GHR protein lev-
els increased with progressive carcinogenesis, with no signifi-
cant changes in either serum or prostate IGF1 levels (272). In 
addition to promoting prostate tumor growth, both GH and 
IGF1 have been implicated in driving refractoriness to radio- 
and chemotherapy in PC (204, 273). Expectedly, 

administration of pegvisomant suppresses xenograft tumor 
growth along with extensive dysregulation of gene expression 
(1765 upregulated and 953 downregulated genes) in the xeno-
graft tumors (274). Table 4 compiles most of the empirical evi-
dence in GH and PC studies. Overall, the majority of the 
studies in PC have modeled endocrine effects of GH, while 
the autocrine/paracrine actions are unknown and may well 
be a critical factor. More importantly, PC is rare in men 
younger than 40 years, and first diagnosis in most of the cases 
is at 67 years of age. This puts into question the role of endo-
crine GH in PC, and in light of the evidence of GH in PC dis-
cussed above, demands a more careful assessment.

Endometrial Cancer
Multiple reports confirm that GH action promotes endomet-
rial cancer (EC) cell proliferation, invasive growth, and pro-
tection from several antineoplastic approaches. The normal 
human endometrium preferentially expresses GH in the glan-
dular cells of the decidua (rather than the glandular secretory 
cells and stromal cells), and mostly between the mid and late 
luteal phase (276) and is known to drive epithelial prolifer-
ation (277-279). Numerous studies show that this autocrine/ 
paracrine GH continues to play major role in endometrial 
pathologies including cancer (Table 5), although 
age-associated changes in endometrial GH production are 
yet unknown. This is hinted in histopathological analyses of 
healthy and diseased endometrial tissues from an Australian 
biobank, where GH expression was upregulated by 3.4-fold 
in endometriosis and 3.8-fold in endometrial cancer compared 
to normal uterine tissue (280). A series of studies by Lobie and 
colleagues described additional details of autocrine GH in 
endometrial cancer, which closely followed the results of simi-
lar experiments in mammary cancer. For example, forced ex-
pression of human GH in EC cells increased proliferative 
growth, rescue from serum-withdrawal induced apoptosis, 
anchorage independent cell growth, induction of EMT, and 
enhanced tumorigenicity in nude mice (187, 283). 
Additionally, autocrine GH was protective against several in-
ducers of DNA damage-inducing anticancer therapies, 

Table 4. Studies implicating growth hormone in prostate cancer

Material Method Study summary Reference

primary tissues, cell lines RNA/protein GHR overexpressed in neoplastic than normal prostate (265)
cells and patient samples GHR expression readily detectable expression, increases proliferation (275)
primary tissues, cell lines GH treatment acute increase in prostatic androgen receptor (265)
cell lines GH treatment increases IGF1 and IGF1R differentially based in androgen-dependent manner (268)
tumor-prone C3(1)-Tag 

mice
crossed with GHRKO mice progeny have highly reduced tumor incidence, burden, and volume, reduced 

proliferation, increased apoptosis
(269)

tumor-prone C3(1)-Tag 
mice

prostate-specific inducible 
GHRKO mice

progeny have reduced tumor incidence, burden, reduced proliferation, increased 
apoptosis

(270)

mouse tumor cell lines in 
nude mice

GHR overexpression increased xenograft size and weight (270)

PTEN-null CRC cells in 
nude mice

GHRA (pegvisomant) treatment, 
RNA-seq

suppressed tumor growth, several DEGs (274)

tumor-prone Probasin/Tag 
rat

crossed with SDR progeny has markedly reduced tumor incidence (272)

Abbreviations: GH, growth hormone; GHR, growth hormone receptor; GHRA, growth hormone receptor antagonist; SDR, Sprague Dawley rats.
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including radiation and chemotherapy (mitomycin C [MMC], 
doxorubicin, cisplatin) (162, 188, 189). Notably, all the 
above effects of autocrine GH were attenuated significantly 
by GHRA (either B2036 or pegvisomant). To ascertain if 
this empirical evidence has clinical correlates, we used the 
KMplotter platform to assess GHR or GH1 expression asso-
ciated OS and RFS in endometrial cancer patients (Fig. 5). 
We saw that a tumoral GHR expression does indeed correlate 
significantly with poorer OS and RFS in patients with EC. The 
results are similar for increased tumoral expression of GH in 
the same group of patients, with almost 3-fold difference in 
survival (in months) between high and low GH expression 
groups (Fig. 5). Our findings corroborate earlier reports that 
higher tumoral GH or both GH and PRL protein levels correl-
ate inversely with 5-year survival of EC patients (183). 
Therefore, future studies aiming at sensitizing EC to antineo-
plastic regimens by combining GHR antagonism can pave the 
way for improved prognoses in patients.

Melanoma
GHR is expressed in the skin, preferentially in the dermal fi-
broblasts where it increases fibroblast cell numbers. IGF1 is 
also detected in dermal fibroblasts and increases proliferation 
of keratinocytes, which have abundant IGF1R levels (284), 
whereas both GH and IGF1 drive melanocyte proliferation 
(285). Several in vitro and in vivo studies have implicated 
GH’s role in melanoma (Table 6). The relative upregulation 
of GHR in melanoma cells compared to normal cutaneous 
cells observed from a histopathologic analysis of 126 
paraffin-embedded tissue samples was the first implication 
of GH in melanoma pathology (292). Autocrine GH RNA 
and protein are both detected in the human melanoma cells 
(287, 288) and show active downstream signaling via 
STAT5 and STAT3, as well as SRC, AKT-mTOR, and 

ERK1/2 pathways. Moreover, intriguing clinical reports of 2 
patients, above the age of 50, were diagnosed with melanoma 
following 3 months of recombinant GH treatment (293). By 
assessing GHR expression levels in all 60 cancer cell lines in 
the National Cancer Institute’s (NCI60) panel covering 9 dif-
ferent cancer types, we found that the metastatic melanoma 
cell lines have the highest level of GHR RNA expression, 
and mean GHR expression in melanoma cell lines was 50 
times higher than the mean GHR expression for the entire 
NCI60 panel (286). A series of subsequent in vitro studies 
show that GH drives multiple oncogenic processes in melan-
oma including proliferation, induction of EMT, anchorage in-
dependent growth, migration-invasion, multidrug efflux, 
melanosomal drug sequestration, altered cellular metabolism, 
and chemoresistance (211, 288, 290, 291). In vivo, an excess 
of serum GH increases the intrinsic drug resistance in human 
melanoma cells, which was exacerbated with introduction of 
chemotherapy and was IGF1 independent (291). Moreover, 
both GH-knockout (GHKO) and GHA mice showed reduced 
implanted murine melanoma tumor growth. Interestingly, the 
GHA mice, unlike the GHKO mice, responded significantly 
better to cisplatin treatment compared to wild-type mice. 
This indicates that not the mere absence/suppression of circu-
lating GH is sufficient to curb chemotherapy-induced drug re-
sistance, which may be a function of autocrine GH that the 
GHRA can effectively block (211). Interestingly, a pathogenic 
splice variant of GHRHR has been observed in 61% of the 
melanoma samples compared to only 8% of the dysplastic 
nevi, but unlike the GHRHR found in the pituitary, this vari-
ant does not appear to control GH production in the melan-
oma cells (294). Moreover, some somatostatin receptors are 
also expressed in melanoma cells, but they are unable to regu-
late GH production. In contrast to GHR antagonism, pasireo-
tide trials in malignant melanoma patients have not presented 
good efficacy (295). The strong corroboration of gene 

Table 5. Studies implicating growth hormone in endometrial cancer

Material Method Study summary Reference

normal tissue expression GH RNA/protein expressed in glandular epithelia, drives cell proliferation (276-279)
patient sample—IHC autocrine GH increased proliferation (187)
patient sample—IHC correlation with tumor GH expression tumor GH expression correlates with ovarian metastasis, tumor grade (183)
patient sample—IHC GH protein expression upregulated 3.8-fold in cancer samples (280)
patient data survival correlation analysis tumor GH (or GH + PRL) levels correlate with poorer survival (281, 282)
EC cells autocrine GH resistance to starvation induced apoptosis (187)
EC cells autocrine GH resistance to radiotherapy induced apoptosis (188)
EC cells autocrine GH resistance to chemotherapy (MMC, doxorubicin, cisplatin) induced 

apoptosis
(162, 189)

EC cells autocrine GH resistance to oxidative stress induced apoptosis (190)
EC cells autocrine GH induces EMT, promotes migration-invasion, metastasis (187, 283)
EC cells GHRA (B2036) treatment blocks inhibition of growth suppression (187)
EC cells GHRA (B2036) treatment increases starvation induced apoptosis (187)
EC cells autocrine GH + GHRA (B2036) 

treatment
increases chemotherapy (MMC) induced apoptosis (162)

EC cells autocrine GH + GHRA (B2036) 
treatment

increases radiotherapy induced apoptosis (188)

EC cell nude mice 
xenograft

autocrine GH increased tumorigenicity and tumor growth (187)

Abbreviations: EC, endometrial cancer; EMT, epithelial-to-mesenchymal transition; GH, growth hormone; GHRA, growth hormone receptor antagonist; IHC, 
immunohistochemistry; MMC, mitomycin C; PRL, prolactin.
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expression patterns identified from in vitro experiments with 
that found in the Cancer Genome Atlas (TCGA) transcrip-
tome of patients with melanoma, and the efficacy of GHR an-
tagonism against both autocrine and exogenous GH, indicate 
that GHR antagonism may boost chemotherapy, targeted 
therapy, or immunotherapy approaches currently used in 
melanoma.

Gastric Cancer
Gastric cancer (GC) is one of the top 5 common and lethal 
cancer types globally. Both GHR and PRLR are detected 
throughout the normal gastric mucosal and glandular epithe-
lium, as well as in all stages of GC progression from neoplasm 
to metastasis, indicating consistent GH action in this organ 
(296). An increase in GH action during oncogenic transform-
ation in GC can be inferred from the fact that GHR is overex-
pressed in most primary GC samples compared to adjacent 

normal stomach tissue and correlates with worsening tumor 
grade and stage (297, 298). Moreover, supra-normal serum 
GH levels are often observed in GC patients and this correlates 
with poorer response to therapy (260, 299). Intriguingly, 
while the Ecuadorian patients with LS have almost zero cases 
of cancer, GC is responsible for as much as 30% of the cancer- 
associated deaths in their first-degree relatives (300). This 
does not, however, implicate endocrine GH in GC, due to 
lack of incidence in younger populations and no variation in 
incidence in acromegaly or in GHD patients treated with 
GH. Mechanistically, multiple in vitro studies implicate GH 
in promoting GC tumor proliferation, invasive growth, and 
suppression of apoptosis via a JAK2-STAT5 and PI3K-AKT 
pathway activation (297, 298, 301). In vivo, nude mice xeno-
grafts of GC cells transfected with GHR-targeting shRNA 
show significant suppression of tumor growth compared to 
GHR-sufficient xenografts (298), confirming the cell culture 
results. In fact, GHR is one of the top 5 biomarkers in GC 

Figure 5. GH and GHR expression negatively correlate with overall survival (OS) and relapse-free survival (RFS) in endometrial cancer. KMplotter 
generated survival probability of endometrial cancer (EC) patients with low or high GHR expression (A, B) or GH1 expression (C, D). (A) OS correlation with 
GHR in all patients with EC (n = 542); (B) RFS correlation with GHR expression in patients with EC (n = 422); (C) OS correlation with GH1 in all patients with 
EC (n = 542); (D) RFS correlation with GH1 expression in patients with EC (n = 422).
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with GH binding protein levels upregulated by 2.8-fold in the 
serum of GC patients compared to healthy subjects (302). Our 
survival analysis of 371 GC patient samples (TCGA dataset) 
using the KMplotter platform confirms the inverse correlation 
of GHR and GH expression with poorer patient survival in 
GC (Fig. 6). Increasing levels of both GHR and GH1 RNA lev-
els in the tumor samples correlate with significantly higher 
hazard ratios for both OS and RFS in the patients (Fig. 6). 
Additionally, among 75 patients of advanced GC undergoing 
anti-PD1-antibody therapy, higher serum GH positively cor-
relates with lower PFS, OS, and disease control rate (299), 
similar to observations in patients with HCC (discussed 
above). Recent studies indicate that in GC, GH’s proliferative 
capacity is associated with a nuclear localization of the GHR 
and can be successfully antagonized by pegvisomant both in 
cultured cells and mouse xenografts (68). These results (sum-
marized in Table 7) provide a preliminary but provocative in-
dication that GHR abrogation may boost immunotherapy 
outcomes in cancer patients and necessitates immediate pre-
clinical validation. Despite clear indications of autocrine GH 
expression, most of the above studies considered only the 
endocrine or exogenous GH administration. Therefore, future 
studies need to delineate the contributions of endocrine vs 
autocrine/paracrine GH action in GC for successful targeting 
and improvement of prognoses.

Brain Cancer
The effect of targeting the GHR on the prognoses of cancers of 
the CNS are sparse. As CNS tumors are enriched in pediatric 
patients, we re-emphasize that GH treatment in GHD pediat-
ric patients even with prior cases of CNS tumor does not ele-
vate risks of cancer compared to that in the GH-sufficient 
population (128). Nonetheless, several persuasive reports im-
plicate GH action in the development and pathology of the 
CNS, including in cancers (listed in Table 8). For example, 
in meningioma, a common type of brain cancer, GHR is wide-
ly expressed in all samples tested and treatment with B2036 
reduced cell proliferation of primary meningioma cultures 
(303). The efficacy of GHRA was further corroborated in 
slowing down tumor growth by > 40% in 15 different human 
patient-derived meningioma primary cell xenografts in nude 
mice and treated with pegvisomant for 8 weeks (304). In 

another very common brain cancer, glioma, an entire panel 
of glioma cell lines were positive for GHR and IGF1R expres-
sion (305). Subsequent studies in glioblastoma (GBM), which 
is the most common type of brain cancer, show GHR overex-
pression in one-third of the patients and enriched in tumors 
with suppressed EGFR levels, and often associated with a re-
duced expression of SOCS2 due to SOCS2 promoter/enhancer 
hypermethylation (309). Moreover, patient-derived GBM tu-
mors in culture showed endogenous GH production and also 
showed aggravated xenograft growth in nude mice (309). In 
vitro assays with GBM cell lines show that GHRA 
(hGH-G120K) can successfully block GH-promoted cell mi-
gration and invasion (309). Additionally, STAT5B was identi-
fied as a marker of poor prognosis in GBM by correlation 
analysis of tissue microarray data with survival in 167 
WHO 2016 GBM patient samples (312). Studies in brain gli-
omas have additionally addressed the distinction between the 
effects of pituitary (endocrine) and tumor-derived (autocrine) 
sources of GH. On one hand, the success of GHRH antago-
nists (MZ-5-156) in suppressing the growth of human glioma 
cells in vitro and in nude mice (306, 307) ascribe a role of 
endocrine GH in glioma, although GHRH can induce GH re-
lease from some extrapituitary neural tissues like retinal gan-
glion cells as well (313). On the other hand, a subsequent 
assessment of 25 glioma samples from cancer patients showed 
GH immunoreactivity in 100% of the samples along with co-
localization with GHR (predominantly cytoplasmic than nu-
clear) (308), confirming a robust autocrine/paracrine GH 
action in brain tumors. Cyst fluids from GBM patients also 
show an enrichment of GH and positive correlation with tu-
mor volume (310). Therefore, GHR remains as an untapped 
potential drug target in glioma. Importantly, IGF1 has a pro-
found tumor-promoting and therapy-refractory role in glioma 
and has been enthusiastically investigated (314-317). 
By virtue of suppressive effects on both IGF1 and IGF2 (li-
gands of IGF1R) serum levels, pegvisomant and similar 
GHRAs can potentially have a significant effect in brain tumor 
therapy.

Bone Cancer and Metastases
In addition to the primary sites of osteosarcomas, bones are 
also a principal site for metastasis, quiescence, and relapse 

Table 6. Studies implicating growth hormone in melanoma

Material Method Study summary Reference

patient sample IHC for GHR upregulated GHR expression in melanoma (285)
different cancer cell lines (NCI-60) GHR expression melanoma has highest GHR expression among other cancer types (286)
melanoma cells conditioned media spontaneous autocrine GH production (287, 288)
melanoma cells exogenous GH increased proliferation (287, 289)
human and mouse melanoma cells exogenous GH drug efflux, drug sequestration, resistance to chemotherapy  

(doxorubicin, cisplatin, paclitaxel, vemurafenib)
(288, 290)

cell line exogenous GH increases cell proliferation, induces EMT, promotes migration-invasion (287, 289, 291)
cell line + GH GHR knockdown decreases ABC transporter expression, decreases drug efflux,  

reduces cell proliferation, blocks EMT, decreases migration-invasion
(289, 290)

cell line + GH anti-GHR mAb decreases migration-invasion (287)
bGH, GHRKO mice syngeneic allograft high GH drives increased ABC transporter expression, increased EMT (211, 291)
GHA, GHKO mice syngeneic allograft reduced ABC transporters, sensitive to chemotherapy (cisplatin) (211, 291)

Abbreviations: EMT, epithelial-to-mesenchymal transition; GH, growth hormone; GHR, growth hormone receptor; IHC, immunohistochemistry.
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for several cancers, including those of the breast and prostate 
(318), and are devoid of any effective treatment options. 
GH drives mesenchymal stem cell (MSC) differentiation 
into osteoblasts (319, 320) and has critical functions in the 
bone and cartilage tissues (321), including several 
IGF1-independent effects (322, 323). In bones, the import-
ance of GH action in the context of cancer (listed in 
Table 9) is thus two-fold: in promoting bone tumors and 
also in promoting bone as a site for tumor metastasis. GH ex-
pression has been reported in canine metaphyseal growth 
plates as well as in 25% of studied canine osteosarcoma speci-
mens (324) and, therefore, presents the premise for autocrine/ 
paracrine GH action, abetting metastasis. GH signaling via 
JAK2/STAT5 (A and B) has also been shown in rat osteosar-
coma cells (UMR106) that express endogenous GHR (325). 
Recently, Cheng et al have provided the first direct study of 
GH and human osteosarcoma (326). The authors showed 
that in human osteosarcoma samples, GHR expression was 
markedly higher than that in osteofibrous dysplasia, while in 

human osteosarcoma cell lines (143B and U20S), GHR 
knockdown promoted apoptosis, suppressed invasive pheno-
types, and also suppressed xenograft growth in nude mice, pri-
marily by suppression of the PI3K/AKT pathway (326). In 
patients with osteosarcoma and Ewing sarcoma, serum 
IGF1 and IGFBP3, downstream targets of hepatic GHR acti-
vation, are elevated and correlate with tumor grade and recur-
rence (327). Moreover, multiple recent studies using mouse 
models of congenital excess GH as well as GHR antagonism 
have revealed exciting molecular details implicating the 
GH-GHR pair in upregulating inflammation and loss of 
bone and cartilage in the joints (328-330). As inflammation 
is a hallmark of cancer (discussed below), it can be reasonably 
postulated that more studies targeting GH in bone tumor and/ 
or metastasis posits promising results. Lastly, muscle is also a 
contributor of endocrine GH-induced IGF1 synthesis, and the 
proximal structural association of muscles and bones presents 
a rather enriched source of paracrine GH/IGF action in the 
TME (331).

Figure 6. GH and GHR expression negatively correlate with overall survival (OS) and relapse-free survival (RFS) in gastric cancer. KMplotter generated 
survival probability of gastric cancer (GC) patients with low or high GHR expression (A, B) or GH1 expression (C, D). (A) OS correlation with GHR in all 
patients with GC (n = 371); (B) RFS correlation with GHR expression in patients with GC (n = 215); (C) OS correlation with GH1 in all patients with GC (n =  
371); (D) RFS correlation with GH1 expression in patients with GC (n = 215).
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Table 7. Studies implicating growth hormone in gastric cancer

Material Method Study summary Reference

patient samples RT-qPCR and Southern blot GHR and PRLR expression in normal gastric epithelia, all stages of GC 
from neoplasm to metastasis

(296)

patient samples RT-qPCR and IHC GHR overexpressed in cancer vs adjacent normal tissue, correlates with 
worse tumor grade and stage

(297, 298)

patient serum sample radioimmunoassay for GH serum GH significantly higher than normal (260)
patient serum GH immunoassay and clinical 

correlation
higher serum GH correlates with poorer response to anti-PD1 

immunotherapy
(299)

patient serum biomarker 
profiling

antibody microarray, ELISA serum GHR increased by 2.8-fold in GC patients, GHR a biomarker of 
GC

(302)

patient samples, GC cell 
lines

GHR level, GH treatment increased proliferation, increased EMT, decreased apoptosis, nuclear GHR (68, 297, 
301)

GC cells GH treatment inhibits growth suppression (298)
GC cells GHR knockdown increases apoptosis (298)
GC cells, nude mouse 

xenograft
GHR knockout cells suppressed tumor growth (298)

GC cells, nude mice 
xenograft

GHRA (pegvisomant) treatment inhibits cell proliferation and tumor growth, blocks nuclear localization of 
GHR

(68)

Abbreviations: EMT, epithelial-to-mesenchymal transition; GC, gastric cancer; GH, growth hormone; GHR, growth hormone receptor; GHRA, growth hormone 
receptor antagonist; IHC, immunohistochemistry; PRLR, prolactin receptor.

Table 8. Studies implicating growth hormone in brain cancer

Material Method Study summary Reference

meningioma—patient samples RT-PCR GHR expressed in all samples (303)
meningioma—primary cell culture GHRA-B2036 treatment suppressed meningioma cell growth (303)
meningioma—patient-derived xenograft in 

nude mice
GHRA (pegvisomant) 

treatment/8 weeks
suppressed in vivo tumor growth (304)

glioma—cell lines RT-PCR GHR, IGF1R expressed in all samples (305)
glioma—cell lines and nude mice xenograft GHRH antagonist treatment suppressed growth in vitro and in vivo (306, 307)
glioma—patient samples radioimmunoassay GH and GHR present in all samples and colocalize (308)
glioblastoma—patient samples gene expression analysis GHR expression in 1/3 of samples (309)
glioblastoma—patient-derived cells in 

culture and nude mice xenograft
cell/tumor growth endogenous GH production, aggressive growth in vivo (309)

glioblastoma—patient sample proteomic analysis enrichment of GH, correlates with patient tumor volume (310)
multiple brain tumor patient samples IHC for GHR 73% of craniopharyngiomas, 59% of pituitary adenomas, and 

23% in germ cell tumors express GHR
(311)

Abbreviations: GH, growth hormone; GHR, growth hormone receptor; GHRH, growth hormone releasing hormone; IGF1R, insulin-like growth factor 1 receptor; 
IHC, immunohistochemistry.

Table 9. Studies implicating growth hormone in bone cancer and metastases

Material Method Study summary Reference

canine osteosarcoma samples RT-PCR GH present in 25% of samples (324)
rat osteosarcoma cells + GH immunoprecipitation, Western blot GH activates JAK2-STAT5 (325)
patient samples IHC GHR overexpression in osteosarcoma samples (326)
OS cell lines, nude mice xenograft GHR knockdown attenuated cell growth, increased apoptosis, suppressed 

xenograft growth
(326)

patient samples (OS and Ewing 
sarcoma)

RT-PCR and ELISA, clinical 
correlation

increased serum IGF1, IGFBP3 correlate with tumor grade and 
relapse

(327)

Abbreviations: GH, growth hormone; GHR, growth hormone receptor; IGF1, insulin-like growth factor 1; IGFBP, insulin-like growth factor binding protein.
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Other Cancers
The cancer types discussed above share a relatively higher vol-
ume of empirical studies implicating GH action in different 
parts of tumor development and therapeutic response. In add-
ition to these, numerous other excellent studies spanning mul-
tiple other cancer types (listed in Table 10) have affirmed the 
role of GH in promoting cancer.

Human lung cancer is one of the most incident and fatal 
cancer types. GH and GHR are expressed in the lungs, where 
autocrine/paracrine GH action is known to regulate a prote-
ome signature which includes IGF1 (332-335). Three inde-
pendent studies from the UK, China, and USA have reported 
that the GHR-P495T SNP in the GHR gene (C to A on 
GHR1526; rs6183), resulting in an amino acid change at pep-
tide position 495 from proline to threonine, is associated with 
a markedly higher odds ratio for both small cell and non-small 
cell lung cancer (336-338). Chhabra et al have described that 
the P495T mutation impairs the SOCS2 binding site along 
with a phosphorylated Y487 at the intracellular domain of 
the activated GHR leading to a sustained activation of GHR 
(339). This oncogenic role of GHR in lung cancer is indeed 
an excellent example of the important position of GH action 
as a target in cancer.

Pancreatic cancer is a highly common, lethal, and 
therapy-resistant malignancy, due to difficulties in early diag-
noses and an intrinsic antineoplastic resistance. Compared to 
its low expression in the normal acinar and ductal cells, GHR 
is overexpressed in pancreatic ductal adenocarcinoma (> 90% 
of pancreatic cancer cases). Pancreatic cancer cell lines and 

human pancreatic ductal adenocarcinoma samples show sig-
nificant overexpression of GHR, positively correlating with 
worsening tumor stage (340). In vitro experiments with pan-
creatic cancer cell lines show exogenous and autocrine 
GH-driven resistance to apoptosis, induction of EMT, and re-
sistance to chemotherapy (340-342). In a male and female 
nude mice xenograft study, cotreatment with GHRA and gem-
citabine significantly improved the efficacy of the chemother-
apy, resulting in multiple tumor-free mice at the end of the 
study (341, 342). Chemotherapies such as gemcitabine, pacli-
taxel, and folfironox, which are currently the leading treat-
ment approaches in pancreatic ductal adenocarcinoma, are 
substrates of ATP-binding cassette (ABC) transporters upre-
gulated by GH action. Therefore, GHR targeting should be 
explored to restore cytotoxic capacities of existing chemother-
apeutic options, using relevant mouse models.

GH is produced by the ovary (347), cervix (348), endomet-
rium, and breast tissues as discussed above (135), with known 
autocrine/paracrine functions via consistent GHR expression 
also observed in each of these tissues (348-351). Moreover, it 
is well-studied that estrogen exerts an inhibitory effect on GH 
action in peripheral tissues (352-354). Despite distinct roles of 
GH in the pathophysiology of these organs (355), the effects 
of GH signaling or the antagonism thereof in the cancers of 
ovary and cervix are so far overlooked compared to the large 
volume of studies in breast and endometrial cancers. A single 
study in cervical cancer showed that exogenously added GH 
preferentially induces an epithelial-mesenchymal hybrid 
phenotype (increased cell-scattering, migration, EMT marker 

Table 10. Studies implicating growth hormone in other cancers

Material Method Study summary Reference

Lung cancer
patient samples, cell lines RNA, protein GH and GHR widely expressed in normal lung tissue, promotes 

IGF1 production
(332-335)

patient sample high-throughput sequencing P495T mutation in GHR leads to decreased GHR deactivation, 
promotes oncogenesis

(336-338)

lung epithelial cells P495T-GHR expression induces EMT, promotes migration-invasion (339)
Pancreatic cancer
patient samples, human cell lines GHR—Western blot, IHC GHR is overexpressed in pancreatic tumor cells and tissue (340)
human cell lines GH treatment (+GHR knockdown) increased proliferation (blocked by GHRA) (340)
human cell lines GH treatment (+GHR knockdown) increased EMT (blocked by GHRA) (340)
human and mouse cell lines GH +/− pegvisomant increased response to chemotherapy (gemcitabine, doxorubicin) (341)
Nude mice +/− gemcitabine GHRA (pegvisomant or comp-G) 

treatment
increased response to gemcitabine (342)

cell line + GH exogenous GH induces EMT, promotes migration-invasion, (blocks EMT) (340)
Lymphoma
patient samples, cells radioimmunoassay, Northern blot GH and PRL expression (343)
Burkitt lymphoma cell with GHR 

overexpression
DNA microarray, Western blot resistance to methyl methanesulfonate-induced apoptosis (344)

Burkitt lymphoma cell with GHR 
overexpression

anti-GH oligonucleotide increased DNA damage (344)

Cervical cancer
CC cells exogenous GH induces EMT, promotes migration-invasion (345)
Liposarcoma
patient samples RT-qPCR GHR expressed in tumor samples (346)

Abbreviations: EMT, epithelial-to-mesenchymal transition; GH, growth hormone; GHR, growth hormone receptor; GHRA, growth hormone receptor antagonist; 
IGF1, insulin-like growth factor 1; IHC, immunohistochemistry; PRL, prolactin.
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expression) in cervical cancer cells but not in noncancer cells 
(345). In our analysis of the TCGA database for patients 
with cervical cancer, a significant correlation of GHR expres-
sion with poorer OS and higher hazard ratio was observed 
(Fig. 7A), corroborating the validity of the single study and 
highlighting the importance of GH action in cervical cancer. 
The age-associated nonpituitary GH production in these tis-
sues is unknown and needs to be ascertained. Moreover, the 
status and impact of GH-induced PRLR activation is critical 
yet mostly unexplored in any of these cancer types which 
have high PRLR expression, since PRLR activation is known 
to be detrimental in all of these cases (169, 356-359).

A number of cancers, despite known GH and/or GHR ex-
pression and function in the normal physiological state, lack 
any studies in their role in the corresponding malignancy. 
One example is thyroid cancer, where in our assessment of 
thyroid cancer patients in the TCGA database, we observed 
a clear inverse association of patient survival with increasing 
GHR expression (Fig. 7B). Similarly in the rare neuroendo-
crine cancers pheochromocytoma and paraganglioma, devel-
oping from chromaffin cells of the neural crest, IGF1 
signaling has been well-studied (360), but GH action has 
not been checked. We found that tumoral GHR expression 
strongly correlates with markedly poorer patient survival 

(TCGA dataset) in this cancer type (Fig. 7C). Similarly, in 
chromophobe renal cell carcinoma, a rare kidney tumor of 
low malignancy and high survival rate, GHR expression sig-
nificantly correlates with poorer patient survival (Fig. 7D). 
Tumor-promoting actions of IGF1 have however been well- 
studied in renal cancers (361, 362) and validates a space for 
application of GHR antagonism to lower IGF1R ligands in re-
nal cancers, Human GH is expressed by several lymphocytes 
and leukocytes (reviewed later), while autocrine GH produc-
tion has also been observed in some lymphomas, such as 
Burkitt lymphoma (343, 363), where autocrine GH conferred 
resistance to methyl methanesulfonate-induced apoptosis 
(344). Lastly, consistent with extensively studied role of 
GH-GHR pair in the AT, the presence of GHR has been re-
ported by a single report in lipoma (8/12 samples) and liposar-
comas (3/10 samples), especially in the vascular endothelium 
of the liposarcomas (346), although no additional follow-up 
studies in this area are reported.

We must mention here that overexpression of GH1 or GHR 
in the tumor does not automatically correlate with poorer 
overall survival in all cancer types. In some cancers (eg, liver 
cancer), tumoral GHR expression is in fact positively corre-
lated with survival in several patient groups (discussed above). 
Yet, in vitro, in vivo, and even in human patients a clear 

Figure 7. GHR expression negatively correlates with overall survival (OS) in different cancer types. GEPIA2 platform generated survival probability in 
cancer patients with low or high GHR expression for (A) cervical cancer (n = 292); (B) thyroid cancer (n = 307); (C) pheochromocytoma and paraganglioma 
(n = 182); and (D) kidney chromophobe (n = 63) from The Cancer Genome Atlas (TCGA) database.
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anticancer benefit using GHRAs in liver cancer is reported 
(discussed above). Resultantly, as with any particular gene 
in cancer, it would not be prudent to draw a universal correl-
ation of GH1 or GHR expression with decreased survival 
merely based on the cancer type and is highly dependent on 
different characteristics of the cohort (age, sex, race, treatment 
type, tumor grade and stage, clinical history) under consider-
ation. Additionally, as now confirmed by single-cell sequen-
cing, expression of a given gene has an astounding degree of 
inter- and intra-tumor heterogeneity (364, 365) and, there-
fore, each tumor in individual cancer patients is unique, and 
biopsy samples can help capture only a fraction of it. 
Therefore, inclusion of high-resolution methods like single- 
cell analyses in preclinical and clinical studies is key to ascer-
taining the extent of GH action in the TME of a particular 
cancer and is critical in determining the subsequent applicabil-
ity of GHR antagonism in a cancer patient.

In essence, the above series of clinical and empirical findings 
strongly support and validate a definite role of GH/GHR ex-
pression and action in the genesis and progression of different 
human cancers and constitutes a body of evidence which is 
more than associative. These studies and others have in detail 
also elucidated the molecular mechanisms underlying the ob-
servations and are essential in adequately understanding the 
clinical value of targeting GH action in cancer. Below we sum-
marize the details of numerous mechanistic findings of GH’s 
versatile effects in cancer, which further emphasize the limited 
role of endocrine GH in age-associated cancer development 
and vindicates the autocrine/paracrine action of nonpituitary 
(peripheral tissues, tumor) GH in cancer.

Mechanisms of Action of GH in Cancer
With time, our understanding of cancer as a disease has grad-
uated from an initial reductionist view of a tumor being a 
homogeneous mass of aberrant transformed cells, to the cur-
rent single-cell resolution view of a tumor being a highly het-
erotypic and efficient organ system with a multitude of distinct 
cell types working in tandem to ensure survival and expansion 
(20). Starting in year 2000, Hanahan and Weinberg intro-
duced a landmark treatise following the evolving understand-
ing of cancer as a disease (20, 366, 367) titled “Hallmarks of 
Cancer.” It provides the conceptual scaffold to understand the 
functional capabilities acquired for neoplastic transformation 
and maintenance of malignancy. The basic features of a tumor 
cell, as introduced in 2000 are sustained proliferative signal-
ing, evading growth suppressors, enabling replicative immor-
tality, resisting cell death, activating invasion and metastasis, 
and inducing or accessing vasculature (20). In the following 
years, additional emerging hallmarks (ie, deregulating cellular 
metabolism, avoiding immune destruction, nonmutational 
epigenetic reprogramming, unlocking phenotypic plasticity) 
and enabling characteristics (ie, tumor-promoting inflamma-
tion, genome instability and mutation, senescent cells, poly-
morphic microbiomes) were added (366, 367). Together 
these functional requisites are defining features of the TME, 
composed of tumor and associated nontumor cell milieu. A 
plethora of existing and rapidly emerging evidence mechanis-
tically implicates GH in nearly all these hallmarks of cancer. 
Both the tumor and the nontumor components of the TME 
can express GH and GHR, which can be potentiated by the 
DNA-damaging antineoplastic therapies (chemotherapy, ra-
diation) and also aging. Therefore, for the brevity of 

discussion here, we partition the mechanisms of direct GH ac-
tion in the TME into: (i) direct actions on tumor cells of TME; 
and (ii) direct actions on nontumor cells of TME.

Additionally, 2 indirect GH actions are of paramount im-
portance from the therapeutic perspective and often deterio-
rates prognoses in several cancers: (i) production of IGF1; 
and (ii) promoting insulin resistance and hyperinsulinemia. 
Below, we briefly summarize only the relevant information 
on these indirect actions of GH to deliberately bring into con-
text the putative “indirect” effects of GHR antagonism in 
cancer.

Direct Action of GH on Tumor Cells of the TME
The direct actions of GH (mostly autocrine/paracrine) on the 
tumor cells of the TME (Fig. 8), with reported mechanistic de-
tails, are summarized below.

Sustained proliferative signaling
A large body of studies on GH and cancer collectively affirm 
that GH action drives proliferative signaling, exemplified by 
GH-induced increase and GHR antagonism (siRNA, 
shRNA, GHRA)-induced attenuation of proliferative growth 
of tumor cells in culture (in vitro) and xenograft tumor volume 
increase in mice (in vivo) (see Tables 1-10). GH-mediated acti-
vation of GHR has been reported to promote tumor cell prolif-
eration in multiple models of several human and rodent 
cancers. Mechanistically, in addition to the endocrine effect 
of GH in producing another highly potent cellular growth fac-
tor IGF1, there are multiple signaling circuits underlying this 
direct GH-mediated effect: (i) direct induction of proliferative 
intracellular signaling via tumoral GHR activation; (ii) direct 
induction of proliferative intracellular signaling via tumoral 
PRLR activation; (iii) nuclear localized GHR signaling; (iv) 
GHR-associated JAK2 mediated cross-phosphorylation of 
other tyrosine kinase receptors (eg, EGFR, IGF1R); (v) increas-
ing circulating levels of a potent tumor cell growth promoters 
like insulin due to excess GH-induced hyperinsulinemia; (vi) 
suppression of some mechanisms of inactivation, such as 
SOCS-2, perpetuating GH action and tumor proliferation 
(339); and (vii) tumor cell directed induction of GH produc-
tion by nontumor cells of TME and/or increase of the surface 
expression of GHR (366). Specific SNPs of GH1 are also 
known to increase risks for breast cancer (368) and colon can-
cer (248, 369), although multiple related genes are frequently 
affected by SNPs in the GH1 locus.

Importantly, in most human tumors, a repertoire of growth 
factors capable of driving proliferative signaling exists, and 
the tumors attain growth factor autonomy by switching on ec-
topic production of these growth factors into an autocrine/ 
paracrine route. GH is one of these many growth factors 
and is produced by tumor and tumor-associated nontumor 
cells. Similar to most successfully targeted growth factors in 
cancer, tumor cell proliferation does not seem to be GH ob-
ligatory, as several tumors lacking GHR and/or GH do 
show uninterrupted growth in vitro and in vivo. Moreover, 
in almost every xenograft model tested (discussed above), at-
tenuation of GHR signaling alone decelerates but does not 
completely stop the tumor growth. Therefore, despite its pro-
liferative potential and abundant production at the tumor site, 
it is plausible that the role of GH in the TME is more special-
ized than driving sheer cellular multiplication, especially given 
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the known versatility, range, and tissue-specific exclusivity of 
GH’s normal physiological actions.

Evasion from growth suppressors
Strategies for evasion from cellular growth suppression in tu-
mors include downregulation and/or loss-of-function muta-
tions of tumor suppressor genes like TP53, PTEN, and 
others. Example of GH-regulated evasion from growth sup-
pression is reported in MCF7-hGH cells where autocrine 
GH represses transcription of placental transforming growth 
factor β (PTGFβ; a mediator of cell cycle arrest and apoptosis) 
and concomitantly increases mitogenic factor cyclin-D1 
(184), also observed in GC cells (298). More recently, GH 
has been described as a p53 target and in turn a negative feed-
back regulator of p53 to inhibit apoptotic cell fate. In agree-
ment, treatment of human endometrial cancer cells with a 
GHRA (B2036), increased the levels of tumor suppressor 
genes ATM and TP53, as well as multiple pro-apoptotic genes 
(187). Along such actions, local GH does indeed appear to 
promote a “field cancerization” amenable to neoplastic trans-
formation, by additionally attenuating another tumor sup-
pressor gene, phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN), in human colon cell lines and orga-
noids (30).

Resistance to cell death
GH promotes resistance to cell death via multiple mechanisms 
(like attenuation of apoptosis, upregulation of DDR, and pro-
motion of cytotoxic drug efflux) which have been identified 
and consistently observed across a number of human cancers. 
GH-GHR downstream signaling regulated cell fate determin-
ation via apoptosis is fairly consistent in normal and tumor 
cells. For example, human GH-mediated STAT5 activation 
protects pancreatic beta cells from IL1β-, IFNγ-, and 
TNFα-induced apoptosis in a NO-independent manner, by in-
creasing expression of anti-apoptotic BCLxL gene, which har-
bors STAT5 promoter/enhancer binding sites (370). 
Moreover, forced expression of GH in immortalized mam-
mary epithelial cells induced oncogenic transformation and 
conferred anti-apoptotic effects via BCL2 upregulation 
(154). This GH-mediated increase of anti-apoptotic BCL2 
genes and suppression of pro-apoptotic genes has been ob-
served across multiple cancer studies as well. In cancer cells, 
autocrine GH conferred protection from apoptosis induced 
by serum starvation (187), ionizing radiation (188), the alkyl-
ating agent mitomycin C (MMC) (162), hydrogen 
peroxide-induced oxidative stress (190), or chemotherapies 
like doxorubicin and cisplatin (189). A series of studies with 
MCF7-hGH cells have revealed some of the mechanisms by 

Figure 8. Direct tumor-promoting actions of GH on the cancer/tumor cells of tumor microenvironment (TME): multiple cells in the TME, including the 
cancer/tumor cells, can produce GH and express GHR (and PRLR), thereby enabling an autocrine/paracrine GH action in the TME. The direct effect of GH 
on the cancer/tumor cells at the TME include almost all the “Hallmarks of Cancer” (as defined by Hanahan, 2022), reported across hundreds of studies in 
GH and cancer to date. While the implications of GH-regulated variations in “polymorphic microbiomes” in cancer are still at a nascent stage, a compelling 
volume of evidence continues to accumulate detailing autocrine/paracrine GH’s contribution in several hallmarks of cancer.
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which autocrine GH (but not exogenous GH) promotes anti- 
apoptotic rather than mitogenic pathways. Examples of this 
include (i) increase in expression of homeobox domain con-
taining protein HOXA1 and the anti-apoptotic protein 
BCL2 conferring doxorubicin resistance (185); and (ii) in-
crease in the expression of DDR genes like DNA repair heli-
case (ERCC3), ATP-dependent helicase II, DNA repair 
protein XRCC1, superoxide dismutase, UV excision repair 
protein RAD23, and growth arrest and DNA-damage indu-
cible protein (GADD) 45 and GADD153 (CHOP), which pro-
tects the cells from apoptosis induced by serum withdrawal in 
a JAK2/p38-MAPK dependent manner (156, 157, 186). GH 
dose-dependent upregulation of GADD45 and APEN proteins 
also protects CRC cells from ionizing radiation-induced DNA 
damage (258).

GHRAs (B2036 or pegvisomant) have shown efficacy in 
blocking anti-apoptotic effects of GH in several studies (157, 
298) and sensitized cancer cells to the apoptotic effects of 
MMC (162), doxorubicin, and ionizing radiation therapy 
(160, 163, 188). The effects of exogenous GH in conferring 
chemoresistance were found to be independent of IGF1 or es-
trogen signaling (160). Importantly, in contrast to its role in 
DNA damage accumulation in normal cells, GH in tumor cells 
actively drives DDR, ensuring protection from apoptosis 
(263), which could be a function of altered downstream signal-
ing intermediates (STAT5 vs SRC). This tumor-supportive role 
of GH is particularly important in resistance against anticancer 
radiation therapy, which has been extensively reviewed (204, 
273, 371). Interestingly, promoting the DDR pathway in a tu-
mor cell also decreases the tumor mutation burden, which in 
turn suppresses the expression of mutation-associated neo- 
antigens (MANA), which are critical for determining efficacy 
of approved and developing targeted therapies in cancer. It 
needs to be investigated whether GH action, as a corollary of 
promoting DDR in tumor cells, upregulates suppression of 
MANA levels in tumor cells.

Most tumor cells overexpress (especially following initi-
ation of chemotherapy) ATP-binding cassette containing 
transporter (ABC transporter) proteins, which are intrinsic 
methods of cellular detoxification exploited by tumor cells 
to remove chemotherapy (372). There are 48 different types 
of vertebrate ABC transporters with a very broad range of 
antineoplastics as substrates and significant substrate overlap, 
which makes it challenging to therapeutically target individual 
transporters (373). ABC transporters decrease intracellular 
drug retention, enabling protection from induction of 
drug-induced DNA damage and activation of the apoptotic 
program (374, 375). GH exerts both IGF1-dependent and 
IGF1-independent regulation of ABC transporter gene expres-
sion, as demonstrated in melanoma (211, 288, 290, 291), liver 
cancer (211, 237), ER-negative breast cancer (145), and pan-
creatic cancer (J.J.K., manuscript under review) in vitro and in 
vivo where GHR attenuation significantly improved the thera-
peutic efficacies of sorafenib, docetaxel, and gemcitabine, re-
spectively. We further compared the effects of cisplatin 
treatment in the GH-knockout mice (GHKO—low GH, low 
IGF1) and GHA mice (transgenic for GHRA, high GH, low 
IGF1). These experiments clarified that although absence of 
GH in GHKO animals decelerated tumor growth compared 
to wild-type mice in vivo, it did not further improve chemo-
therapy efficacy (211). However, the presence of a circulating 
GHRA (as in GHA mice) was able to reduce cisplatin-induced 
ABC transporter levels and further improve cisplatin efficacy 

(211). These findings appear to have a clinical relevance, as 
we indeed find a high degree of correlation between RNA ex-
pression of GHR and major ABC transporters implicated in 
cancer drug resistance in human patient tumor transcriptomic 
data across 40 different cancer types (Fig. 9A). Recent reviews 
have assimilated the details of GH-mediated resistance to the 
apoptotic effects of cytotoxic agents (radiation and chemo-
therapy) in normal and cancer cells (240, 273, 371) and pre-
sent a persuasive argument for implementing GHR 
antagonism for enhancing/restoring the clinical efficacy of 
these types of anticancer agents.

Activation of invasion and metastasis
Consistent data found in multiple human cancer types indi-
cates that GH’s ability to effect cellular differentiation as ob-
served in normal cells appears to be harnessed by the 
malignant tumor cells in driving expression of genes that in-
duce phenotypic plasticity—for example, the EMT program 
(367, 376). GH is a potent inducer of a subtype of EMT in nor-
mal cells in cases like wound healing, tissue repair, and organ 
fibrosis and has been consistently found in cancer types to in-
duce tumoral EMT as well (377). In this case, multiple studies 
using the MCF7-hGH and additional cell lines of ER+, ER−, 
and TNBC subtypes with forced expression of GH undergo ex-
tensive rearrangement of gene expression under autocrine/ 
paracrine GH effect (36, 159, 161, 162) and differentially in-
volve both the SRC and the JAK2-STAT5, and STAT3 signal-
ing pathways. Relatively consistent across cancer types (187, 
237, 253, 283), the events include a suppression of cell-cell ad-
hesion factors (eg, plakoglobin, E-cadherin, claudin-1, occlu-
din), with concomitant upregulation of EMT-inducing 
transcription factors (eg, Snail, Slug, ZEB1/2, Twist1) and ap-
pearance of mesenchymal markers (like vimentin, N-cadherin) 
(reviewed in (240, 371, 377)). In these cells, autocrine GH also 
induces the microRNA cluster miR-96-182-183, which targets 
breast cancer metastasis suppressor 1-like (BRMS1L) protein 
and drives invasive xenograft growth in nude mice (36). 
Importantly, exogenously added GH in cultured cells have eli-
cited very similar responses in different cancer cells as well as in 
mice. Using the same rationale, transfection of normal cells 
with the P495T SNP variant of GHR (deficient in 
SOCS2-mediated receptor deactivation) induced sustained 
EMT (339). In several of the above studies, attenuation of 
GH signaling using either RNA-interference or GHRA have 
successfully suppressed EMT induction and invasive tumor 
phenotypes. An additional effect of the EMT initiation is the 
extensive production of extracellular matrix (ECM) re-
arrangement components (eg, collagen) and factors (eg, matrix 
metalloproteases), which are strongly promoted by GH in non-
tumor tissues (240). Autocrine GH action has been found to 
drive this desmoplastic event (378) as indicated by the pro-
nounced fibroblastic stroma surrounding MCF7-hGH ortho-
topic xenografts in nude mice, compared to corresponding 
controls (159).

In corroboration of the above, histopathological analyses of 
different human cancer patient samples show a significant as-
sociation of tumoral GH expression with lymph node and 
proximal tissue metastasis (183, 253). Furthermore, even after 
metastasis, GH production of primary tumors was maintained 
in the secondary sites as well (35-37), whereas GHR expres-
sion (both epithelial and stromal compartments) was found 
to be remarkably increased in axillary lymph node 

248                                                                                                                                                         Endocrine Reviews, 2025, Vol. 46, No. 2
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article/46/2/224/7917538 by guest on 17 April 2025



metastasized ductal invasive mammary tumor cells, compared 
to nonmetastatic controls (144). These findings from in vitro 
and in vivo studies are consistent in human patients (TCGA 
dataset) where RNA levels of GHR and several markers of 
EMT show a robust correlation, as observed in 40 different 
cancer types (Fig. 9B).

Induction and access to vasculature
The ability of GH treatment to ameliorate vascular insuffi-
ciencies in GHD children, and identification of several vascu-
lar dysfunctions under a state of GH/IGF1 excess in the case of 
acromegaly while endothelial functions are unperturbed in pa-
tients with LS (379), suggests a distinct role of excess GH ac-
tion in the endothelium (380). Importantly, both GH and 
GHR are expressed in the blood vascular endothelial cells 
(BVECs) (381). Significant GH expression has been reported 
in cultured human microvascular endothelial cells HMEC1 
(382), in bovine brain capillary endothelial cells (383), and 
in vascular endothelium of blood vessels infiltrating tumors 
in human BC and EC patient samples (183). The GHR is 
also expressed by the blood vascular endothelial cells in cul-
ture and in patient samples, more frequently than GH. As 
early as the 1950s, Snell and Ticoll demonstrated that pro-
longed GH treatment in rats lead to increased neoplasms in 
the lymphatic tissues than that found in untreated controls 
(384), while GHR is frequently upregulated in vascular path-
ologies (385). Subsequently, it was shown that forced GH ex-
pression in MCF7-hGH cells promotes survival, proliferation, 
migration, and invasion of co-cultured HMEC1 cells and 
stimulates tube formation in vitro via an increase in VEGFA 

expression (382). GHR expression is 5-30-fold higher in the 
lymphatic endothelial cells compared to blood vascular endo-
thelial cells, co-localizes with markers of lymphangiogenesis 
(386) and appears to be under the regulation of the lymphatic 
master transcription factor PROX1 (387). Moreover, GH 
drives lymphangiogenesis in a VEGFR2 or VEGFR3 inde-
pendent manner and GH action does not induce IGF1 in the 
lymphatic endothelial cells (386). Tumoral GH can thus be 
an autocrine/paracrine trophic factor for tumor neighboring 
endothelium. Overall, GH’s ability to promote angiogenesis 
and lymphangiogenesis in normal cells is exploited by the tu-
mor cells to ensure tumor survival, possible systemic cross-
talk, and metastatic dissemination, potentially being another 
effective target that would inhibit cancer progression. 
Therefore, inhibition of GH action has the ability to potenti-
ate the efficacy of anti-VEGF treatments.

Enabling replicative immortality
GH has been implicated in enabling replicative immortality in 
tumor cells, by upregulating telomerase activity. In the 
MCF7-hGH cells, autocrine GH, via JAK2, increased the ex-
pression of RNA-binding alpha complex proteins αCP1 and 
αCP2, which in turn bind to CU-rich cis-regulatory elements 
in the 3′-UTR of human reverse transcriptase catalytic subunit 
(hTERT) mRNA and stabilizes the latter (388). hTERT is a 
critical functional component of the telomerase complex 
and sustained hTERT mRNA stabilization restores telomer-
ase activity in cells, allowing replicative immortality. This re-
mains a prominent but solitary example of GH-mediated 
telomerase promotion in cancer. It is possible, though, that 

Figure 9. Pan-cancer correlation of (A) GHR and ABC transporters; and (B) GHR and epithelial-to-mesenchymal transition (EMT) mediators across 40 
different cancer types (TCGA datasets).
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excess GH action might affect telomere shortening differently 
in nontransformed cells, as skin fibroblasts from patients with 
acromegaly have shorter telomere lengths (389). Thus, add-
itional studies are required to corroborate these findings and 
validate the results in vivo as well as in other types of cancers 
with GH and/or GHR overexpression.

Deregulating cellular metabolism
Endocrine GH has an important role in maintaining metabolic 
homeostasis, with well-defined actions on glucose, lipid, and 
protein metabolism (390) as well as in the mitochondria 
(391, 392). Alterations in normal metabolic pathways are a 
hallmark feature of cancer, essential to provide mechanisms 
of supply of cellular building blocks for supporting the exces-
sive demands of tumor proliferation. In the 1930s, Warburg 
pointed out that unlike normal cells, cancer cells largely prefer 
glycolysis irrespective of oxygen availability, as glycolysis can 
generate more intermediates for cell building macromolecules. 
A steady supply of glucose is required to sustain this aerobic 
glycolysis and is mediated by increasing GLUT1 and 
GLUT4 in cancer cells. GH also increases cellular glucose con-
tent via increasing de novo gluconeogenesis and glycogenoly-
sis, a situation perfect for tumor glycolytic fueling. We have 
indeed observed that in human melanoma cells, exogenous 
GH increases extracellular acidification rate (ECAR, an indi-
cator of glycolysis) in a dose-dependent manner (288), al-
though GH can suppress glycolysis in inflammatory 
macrophages (393). In AT, GH normally promotes lipid 
breakdown and release of free fatty acids (FFA) in circulation. 
Cancer cells are now known to mobilize lipolysis in neighbor-
ing adipocytes to release FFA, which are imported via special-
ized membrane transporters like fatty acid translocase (FAT 
or CD36), and the fatty acid transporter protein (FATP or 
SLC27) family and can either be stored (as lipid droplets) 
for subsequent NADPH and acetyl-CoA production via 
β-oxidation or used for membrane biosynthesis (394). 
Therefore, autocrine/paracrine GH in the TME has a definite 
potential to recapitulate the lipolytic functions of endocrine 
GH and promote tumor growth via FFA supply. GH’s role 
in mitochondrial biogenesis has shown both promoting and 
suppressing effects while mitophagy has not been studied 
(392). Altogether, the status and bearing of age-associated oc-
currence of tissue-specific GH increase and metabolic shifts in 
cancer etiology possess ample merit to warrant further study.

Avoiding immune destruction
The persistence of tumor growth and/or relapse is highly de-
pendent on successful evasion of the constant surveillance 
and elimination performed by the body’s immune system. 
Understanding these mechanisms has been the pillar of the 
transformative immunotherapy approach in cancer, ushering 
in approaches like the immune checkpoint inhibitors and the 
chimeric antigen receptor T-cell (CAR-T) therapies. 
Accumulating evidence has begun to indicate that GH action 
is associated with the success of immune checkpoint inhibi-
tors, as observed in patients with HCC at the MD Anderson 
Cancer Center in Texas, USA and patients with GC in 
China (discussed above). In the first case, out of 37 patients 
with HCC followed for 1 year post-treatment with atezolizu-
mab (anti-PDL1 mAb; immune checkpoint inhibitor) and bev-
acizumab (anti-VEGF), the cohort with higher serum GH 
levels had only a 33% survival rate (median OS 9.3 months), 

compared to 70% in the group with lower serum GH (median 
OS 18.9 months) (238). In the second case, among 75 patients 
with advanced GC treated with anti-PD1 mAbs (alone or in 
combination with chemotherapy), the group with higher se-
rum GH had a disease control rate of only 30% compared 
to 53% in the group with lower serum GH; the group with 
higher serum GH had a concomitant shorter PFS and OS 
(299). Furthermore, increased serum GH levels appear to 
drive pathways that can interfere with anti-PD1/PDL1 and 
anti-CTLA4 immunotherapy approaches. First, treatment 
with GH or GH-inducing ghrelin in 22-month-old male 
Fischer rats with sepsis decreases PD1 expression in spleno-
cytes (395, 396). It is relevant to mention that GH is also lo-
cally produced in the lymphocytes and increases with age in 
the splenic lymphocytes of live rats (29). Second, bGH mouse 
kidneys show 2- to 4-fold upregulation of CD80 antigen (397) 
which binds to the T-cell CTLA4 and leads to T-cell inactiva-
tion (398). The above observations seem to point at endocrine 
GH, while it is unknown if ectopic GH secretion from the tu-
mor contributes to a higher serum GH. Multiple reports of ec-
topic acromegaly (supra-normal serum GH due to excessive 
production of GH or GHRH from a nonpituitary site, ∼1% 
of acromegaly cases) do report several neuroendocrine tumors 
and other types of tumor tissues (lung carcinoid and adenoid 
cystic tumors, pancreatic cell tumors, gastrointestinal tract tu-
mors, pheochromocytomas, thymic carcinomas) as sites of 
origin of excess serum GH (399, 400). But does this happen 
in a tumor under autocrine/paracrine action? Almost on cue, 
a recent comparative analysis of GH-related immunotherapy 
response and tumoral immune landscape across several cancer 
types and databases appears to answer that. The authors 
found that GH overexpression is associated with an immune- 
deficient TME, designated as an “immune-desert” (401), 
characterized by suppressed infiltration of activated cytotoxic 
immune cells and suppressed expression of immunotherapy 
targets like PD1 or PDL1. Their study also identified increased 
association of microsatellite instability and tumor mutation 
burden—2 key determinants of immunotherapy response— 
with human GH1 expression and confirmed a suppressed re-
sponse to immune checkpoint inhibitors in patients with high-
er serum GH levels in independent study cohorts (401). 
Moreover, several reports suggest a therapeutic role of GH ad-
ministration in management of autoimmune diseases such as 
inflammatory bowel disease (402), pediatric Crohn’s disease 
(403), autoimmune diabetes (404), and collagen-induced 
arthritis (405), which altogether suggest an immunosuppres-
sive function of GH. Overall, much deserved attention should 
be directed at understanding the interaction of GH and im-
munotherapy targets in normal and cancer tissues to identify 
improved antineoplastic combination regimens. While the 
mechanistic details underlying these provocative observations 
are yet to be described, reviewing the literature in GH-immune 
cell interactions can provide ample indications of a role of GH 
in suppressing antitumor immunity in the TME. These are dis-
cussed later under “Immunosuppression.”

Tumor-promoting inflammation
Inflammatory signaling from the TME elicits innate and adap-
tive immune responses leading to immune cell infiltration in 
the TME—long confirmed by pathologists. Although this as-
sociation of tumor cells and immune cells is apparently para-
doxical, it is now understood that it might be a case of a 
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calculated risk. Multiple components of the innate immune 
system can be adapted by tumoral cytokines to be tumor- 
supportive, and inflammatory responses can enable several tu-
mor hallmark properties. Infiltration of cytotoxic immune 
cells on the other hand, might be an unwanted pitfall of in-
flammation in the TME, managed by immune-suppressive 
mechanisms. Primarily, mouse models of GHD (Ames, 
Snell) and GH insensitivity (GHRKO) have reduced 
age-associated inflammation partly due to increased levels of 
serum adiponectin (406)—an anti-inflammatory adipokine 
with well-studied anticancer effects (407). Moreover, 
pro-inflammatory cytokine IL6 levels were suppressed in the 
GHRKO animals (408), while mediators of the inflammatory 
pathway, like cyclooxygenase 2 (COX2) and prostaglandin 
(PGD2) in the testes were decreased (also in GHRH-KO 
mice) relative to wild-type controls (409). Moreover, 
GHRKO mouse AT depots had altered stromal vascular frac-
tion (SVF) with modified T-cell population, which protects the 
animals from obesity-related white AT inflammation (410). In 
contrast, GH transgenic mice have inflammatory liver cancer 
(411) concurrent with increased immune-suppressive cell 
(macrophage and T-regulatory cells) infiltration in peripheral 
tissues (409, 412), and elevated levels of inflammatory 
markers (COX1, COX2, PGD2, cytosolic phospholipase 
A2α [cPLA2α]) (409, 413). Moreover, GH administration at 
a dose of 1 mg/kg body weight using an osmotic mini-pump 
in Swiss-Webster mice increases hepatic COX1 in the male 
mice (413), whereas knocking down GHR in human pancre-
atic cancer cells decreases cellular COX2 levels (340). 
Additional studies are rapidly emerging portraying the details 
of GH-regulated inflammatory reactions in the aging skeletal 
system (329, 330), in the hypothalamus (414), and in macro-
phages (415), all supporting a microenvironmental contribu-
tion of GH-regulated inflammation in cancer. Although no 
studies have so far directly queried GH’s role in promoting in-
flammatory pathways in cancer, it may underlie the net out-
come of GHR antagonism or GH excess observed in vivo. 
Overall, it is evident that autocrine/paracrine GH can poten-
tially drive the cancer hallmark of local inflammation at the 
TME and needs to be systematically studied.

Genome instability and mutation
Alterations in the genes that are involved in DNA damage re-
sponse, repair, and decision of cell fate are fundamental to the 
process of oncogenesis and replicative immortality observed 
in tumor cells, especially withstanding DNA-damaging anti-
cancer treatments. In untransformed human colon cells, ex-
ogenous GH is found to increase chemotherapy 
(etoposide)-induced DNA damage and suppress DDR via 
nonhomologous end-joining, leading to accumulation of mu-
tated unrepaired DNA in the cells, as a prelude to oncogenesis 
(256). The TP53 gene is central to the cellular decisions of 
post-damage repair or apoptosis or senescence and is called 
the “caretaker of the genome” (366). Recent studies by 
Chesnokova and Melmed indicate that GH and p53 share a 
negative feedback regulation in normal cells via reduced phos-
phorylation of the primary responder to DNA damage—the 
ataxia telangiectasia mutated (ATM) kinase. Exogenous or 
age-associated DNA damage induces p53, which in turn indu-
ces the expression of multiple other genes necessary for cell 
fate determination, including the GH1 gene in both humans 
and mice. The mechanism of this effect has 2 components: 

first, GH increases the expression of the transcription factor 
tripartite-motif protein 29 (TRIM29) which suppresses his-
tone acetyltransferase TIP60 expression. This abrogates the 
autophosphorylation of ATM kinase, leading to reduced 
phosphorylation and stabilization of ATM downstream of 
p53 and other DDR proteins (256). Pegvisomant treatment 
rescues the ATM inhibition, indicating that this is a direct ef-
fect of GH via the GHR (256). Also, GH induces wild-type 
p53-inducible phosphatase 1 (WIP1) protein, which in turn 
dephosphorylates ATM kinase and thereby suppresses ATM 
downstream p53 (257), enabling reduced DDR response 
and accumulation of mutations.

In agreement to this fascinating finding, normal skin fibro-
blasts from LS patients show increased baseline expression 
of p53 and decreased levels of proliferation, identical to ob-
servations in colon tissues of Ames and GHRKO mice (30). 
Forced expression of GHR in the GHR-deficient fibroblasts 
from LS patients decreases p53 protein levels in a dose- 
dependent manner, while suppression of GHR expression 
in wild-type fibroblasts increases p53 levels (30). Similarly, 
colonic mucosal biopsies from patients with acromegaly 
show marked restoration of p53 levels following 8-week 
pegvisomant treatment (30). Interestingly, these effects of 
GH were confirmed to be IGF1 independent, as disruption 
of IGF1R expression or signaling did not have any effect 
on increased colon DNA damage either in vitro or in vivo 
(124). A significant suppression of p53 under conditions of 
GH excess has also been reported in other tissues, as the 
synovium in the bGH knee-joints compared to wild-type 
controls (330), and therefore can be postulated to be highly 
permissive of oncogenesis.

Senescent cells
GH-secreting pituitary adenomas also harbor high amounts of 
senescent cells. Investigations in these adenomas and subse-
quently in nonpituitary cells, including BC and CRC cells, 
now affirm that GH is secreted by the senescent cells and is 
an active part of the senescence associated secretory pheno-
type (SASP) (416). However, limited autocrine effect of GH 
in the senescent cell can be expected, as peroxide-induced sen-
escent human mesenchymal stem cells show reduced GH in-
ternalization and poor activation of JAK/STAT pathways 
following GH treatment (416). However, Chesnokova et al 
have shown that nutlin-induced senescence in normal and tu-
mor cells triggers GH production under direct p53 regulation 
(26, 27), which aligns with increased senescence in the skin fi-
broblasts from patients with acromegaly (389). Contrastingly, 
senescence burden was significantly lower in the white AT of 
GHD Snell mice and in GHRKO mice (417), as well as in the 
GHRKO pigs (418). Additionally, sustained IGF1 stimulation 
can also lead to premature cellular senescence via the mito-
chondrial protein thioredoxin-interacting protein (TXNIP) 
(419), particularly relevant given that GH is the primary in-
ducer of circulating IGF1. Radiation and chemotherapy are 
cornerstones of anticancer treatment, and both induce exten-
sive DNA damage in the entire TME. An interesting hypoth-
esis is that DNA damage induces GH production (263) and 
GH in turn promotes resistance to apoptosis and can poten-
tially drive senescence in the DNA-damaged nontumor cells 
in the TME. Further experimental evidence is required as to 
whether suppression of senescence can be an additional thera-
peutic benefit of GHR antagonism in cancer.
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Nonmutational epigenetic reprogramming
Over the last decade, tremendous advancements in epigenetics 
research have culminated in multiple epigenetic modulators 
acquiring regulatory approvals and steadily populating anti-
cancer drug discovery pipelines (420, 421). Although GH ac-
tion in cancer epigenetics is heavily understudied, some 
exciting observations have been reported. Chia and Rotwein 
have described GH-induced rapid (30-60 mins post- 
treatment) increase of core histone acetylation and chromatin 
opening preceding STAT5b binding to promoter/enhancer el-
ements upstream of Igf1, Socs2, Cish, Igfals, and Spi2.1 genes 
in the liver of adult male GH-deficient rats (422), while GH 
treatment suppresses miR-29a via IGF1 in lit/lit mice to pro-
mote insulin resistance and fibrosis (423). An important find-
ing that can have useful implications on sex-specific etiology 
and therapeutic outcome in cancer patients is that the pulsatil-
ity of plasma GH levels regulates sex-specific hepatic chroma-
tin accessibility via dynamic binding of STAT5 and BCL2 in 
mice (424-427). The histone methylation and acetylation sig-
nature from Ames mice are highly consistent (428) and while 
the implications of this epigenetic patterning in cancer are yet 
unknown, Ames mice do have delayed occurrence and re-
duced number of neoplasms (429). In cancer, autocrine GH 
in MCF7-hGH cells has shown modulation of critical epigen-
etic mechanisms that promote EMT, such as DNA methyla-
tion, via DNMT regulation (191) and upregulation of 
miR-96-182-183 cluster (36). In addition, several miRNAs 
and long noncoding RNAs (lncRNAs) have been shown to 
regulate the GH/IGF axis in cancer and have been reviewed 
elsewhere (430-432). Together these studies provide impetus 
for future investigations in epigenetic modulations orches-
trated by GH, especially underlying disease states.

Unlocking phenotypic plasticity
GH drives stem cell differentiation in both normal and tumor 
cells. Autocrine GH expressed in mammary epithelial cells can 
promote oncogenic transformation, preceded by an acinar to 
luminal phenotypic switch (154), while GHR-positive stem/ 
progenitor cells in mammary tissues can form mammospheres 
unlike the GHR-negative cells. As a paracrine effect, 
progesterone-stimulated GH in the mammary epithelia can in-
duce progenitor cell differentiation along luminal and myoepi-
thelial lineages, while GHR-negative cells mostly 
differentiated along luminal lineage (32). In samples of human 
ductal carcinoma in situ (DCIS) lesions, GHR was present in 
> 50% of 176 samples, in which it is co-expressed with the 
stem cell marker ALDH1A1 (32% of 75 samples) and 
ALDH1A3 (24% of 67 samples) and represented a cell popu-
lation that was expanded in the DCIS lesions (32). Autocrine 
GH expression in ER-negative BC cell lines MDA-MB-453 
and SKBR3 also stimulated an increase in cancer stem cell 
(CSC)-like properties in vitro and enhanced tumorigenicity 
in xenograft studies (161). Furthermore, in CRC cell lines 
(DLD1 and Caco2), autocrine GH expression led to a 2- to 
3-fold increase in ALDH1 levels, while multiple markers of 
stemness (CD24, CD44, NANOG, SAL4, POU5F1) were 
preferentially observed in GH-expressing CRC cells (253). 
Induction of the EMT program and increase in CSC populace 
in the TME are interconnected. GH is a potent inducer of 
EMT and GH-driven stemness in cancer is indeed accompan-
ied by a GH-driven induction of the EMT program. Another 
characteristic of CSC is marked upregulation of ABC 

transporters, allowing not only minimal intracellular drug 
residency but also accumulation of tumor-supportive biomo-
lecules in the TME, like IL1β, prostaglandins, and gluta-
thiones (433). In fact, in Huh7 and HepG2 cells with forced 
expression of hGH, appearance of CSC phenotypes included 
upregulated ABCG2 expression (237). As CSCs predict poor 
prognosis and are essential in cancer relapse, GH targeting 
might improve disease prognosis.

GH is a potent regulator of cellular differentiation, al-
though specific expression and the role of GH signaling in 
cancer-associated extensive de-differentiation, transdifferen-
tiation, or blocked differentiation has not been systematically 
studied, despite several compelling actions in normal tissues. 
Human GH can singularly drive cellular differentiation in 
the progenitor mesenchymal stem cells (MSCs) into myocytes, 
adipocytes, or osteocytes (434-438). GH’s capacity to affect 
MSC differentiation is IGF1-independent, wherein IGF1 pref-
erentially promotes clonal expansion of the GH-differentiated 
cells (434). GH can also induce transdifferentiation (439-441) 
partly by differential inductions of the proto-oncogenes c-fos 
and c-jun (439, 442, 443), while recent work have also shown 
examples of “blocked differentiation” by GH in determining 
MSC differentiation by blocking adipogenic and favoring 
myogenic lineage in a context-dependent manner (437, 444, 
445). In cancer, MSCs are a common part of the TME and 
can have extensive participation in tumorigenesis acting as 
cells of origin, providing tumor-supportive cytokines and 
growth factors, promoting chemoresistance, maintaining 
CSCs, promoting EMT, mediating immunosuppression, and 
can also transdifferentiate into stromal fibroblasts (446). 
Therefore, the overt role of GH in MSCs can be a critical fac-
tor in cancer propagation and prognosis.

Polymorphic microbiomes
Recent evidence shows that in addition to well-known direct 
oncogenic effects of pathogenic H. pylori and hepatitis C vi-
rus, our resident microbiota, even as a part of the TME 
(447, 448), can profoundly influence cancer by affecting cell 
proliferation, inflammation, genomic instability, cellular me-
tabolism, antitumor immunity, and therapeutic response 
(448-450), and have promising biomarker properties (451). 
Although no work has as yet connected the 
GH-microbiome-cancer axis, recent work from our labora-
tory has made promising inroads by showing that excess or 
lack of endocrine GH does lead to dysbiosis in bGH and 
GHKO mice compared to corresponding controls (452- 
454). Consistent variations in multiple phyla and genera of 
gut microbiomes with congenital GH status, and also in an 
age-dependent manner, were observed in these mice. 
Multiple recent reports further affirm distinct relative varia-
tions in the gut microbiome of patients with acromegaly 
(455-457) as well as pediatric GHD patients (458). The ram-
ifications of these exciting findings in cancer will be 
forthcoming.

Direct Action of GH on Nontumor Cells of the TME
GH action has a profound influence in orchestrating a tumor- 
supportive TME by distinct actions on the nontumor cells of 
the milieu (28) (Fig. 10). The action of endocrine GH in nor-
mal cellular physiology has been well-studied over the last 
century and includes several cell populations which are also 
active components of a TME. The effect of GH on these 
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normal cells elicits outcomes which can constitute well- 
studied tumor-promoting effects in the TME of mammalian 
cancers. Examples include GH’s action on the endothelial cells 
(see “Induction and access to vasculature”) and stem cells (see 
“Unlocking phenotypic plasticity”), discussed above. 
Additionally, critical components of the milieu are immune 
cells, stromal fibroblasts, and AT, where GH (pituitary or 
nonpituitary) exerts profound effects, which in the context 
of the TME, can be designated as highly tumor-supportive. 
Below, we will highlight the additional covert actions of GH 
resulting from interactions with these cell types, although 
there are phenotypic and functional overlaps: (i) ECM remod-
eling/fibrosis which fuels the desmoplastic TME; (ii) regulat-
ing the nature of immune cell infiltration in the TME to 
escape antitumor immunity; and (iii) dysregulation of the 
AT, which in the TME is mobilized for versatile tumor sup-
port. Currently, it is unknown whether and to what propor-
tion/extent these functionalities of GH are exerted by 
endocrine vs autocrine/paracrine GH produced in the TME, 
and thus this presents a truly fascinating and relatively unex-
plored area of research involving GH attenuation in anti-
cancer therapy.

Extracellular matrix remodeling/fibrosis
Desmoplasia, or the stromal remodeling in the TME, charac-
terized by myofibroblast activation and increased deposition 
of the ECM, is commonly found in almost all cancers, and 
consistently correlates with worse prognoses. This fibrotic 
event in the TME is one of the most challenging obstacles 
for antitumor immunity (459), leading to current enthusiasm 
in development of innovative approaches targeting the tumor 

stromal components (460). A major contributor to tumor des-
moplasia is activation of fibroblast and myofibroblast cell 
population in the TME (461-464). GH and GHR expression 
levels in dermal cells are highest in the fibroblast cells (284, 
465-467), where GH drives fibroblast proliferation (284, 
468-470). In tumors, endogenous GH expression has been 
confirmed in histopathological analyses in tumor-associated 
stromal fibroblast cells and in human BC and EC tumor sam-
ples (183). A principal inducer of fibrosis in normal and cancer 
cells is the transforming growth factor β (TGFβ) pathway 
(471) and TGFβ is upregulated in the serum of untreated, 
but not in treated, patients with acromegaly (472). GH over-
expression in EL4 mouse lymphoma cells increases TGFβ pro-
duction (473), while GH induces TGFβ production (474) and 
intracellular signaling (475, 476) in glomerular podocytes 
contributing to renal pathologies (477, 478). In agreement, 
Tgfb1 transcripts are also found to be significantly upregu-
lated in microdissected glomeruli from the bGH mice (479), 
although the AT fibrosis in bGH mice appears to be 
TGFβ-independent (480). Moreover, GH is an active compo-
nent of SASP (see “Senescent cells”), which is a potent inducer 
of fibrosis in both tumor and nontumor settings (481).

Although no studies have yet investigated GH action in can-
cer desmoplasia, compelling evidence of GH in promoting fi-
brosis is steadily accumulating (summarized in Table 11) and 
this has recently been designated as a covert action of GH with 
deterministic contributions in aging and age-associated mor-
bidities such as cardiovascular disease and cancer (240). For 
example, subpopulations of patients with acromegaly suffer 
from myocardial and hepatic fibrosis, and also present with 
increased collagen turnover with elevated serum levels of 
type I collagen, collagen-specific amino acid hydroxyproline, 

Figure 10. Direct tumor-promoting actions of GH on the nontumor cells of the tumor microenvironment (TME): different cells in the TME, including the 
tumor proximal nontumor cells, can produce GH and also express GHR (and PRLR), thereby enabling an autocrine/paracrine GH action in the TME. The GH 
action on the nontumor components (immune cells, fibroblasts, adipocytes, stem cells, endothelial cells) can exert several tumor-promoting effects in the 
TME (as mentioned and discussed in this review) but this awaits direct experimental validation.
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and procollagen III amino terminal pro-peptide (PIIINP) 
(240). In healthy young individuals, a GH injection of 0.03 
to 0.05 mg/kg/day for 14 days increased tendon collagen I 
protein synthesis by almost 4-fold (482). In fact, an increase 
in circulating levels of collagen-specific nonessential amino 
acid hydroxyproline is known to be increased in adult patients 
with cancer (490, 491) and is a known marker of cancer des-
moplasia/fibrosis (492, 493) and chemoresistance (494). 
Additionally, abnormal urinary excretion of hydroxyproline 
is observed prior to bone metastasis of breast and lung cancers 
(495). In patients with acromegaly, both total and nondialyz-
able urinary hydroxyproline output is elevated (483), while 
recent metabolomic profiling of plasma in bGH and 
GHRKO mice show significantly increased and decreased hy-
droxyproline levels, respectively (489). Moreover, Berryman 
and colleagues have enumerated AT fibrosis across multiple 
mouse models of GH action, wherein fibrosis was measured 
using collagen-specific picrosirius-red staining and measure-
ment of hydroxyproline content. Such evaluations show that 
subcutaneous and perigonadal AT depots of bGH mice have 
increased fibrosis (484), whereas collagen content was de-
creased in the subcutaneous AT depot of GHKO mice (485). 
Importantly, the variations in AT fibrosis observed in bGH 
or GHKO mice, may not be IGF1 dependent, as the liver- 
specific GHRKO mice with increased serum GH (486) had in-
creased AT collagen content despite markedly lower serum 
and hepatic IGF1 (484), whereas the attenuation of GH recep-
tion in the AT using a fat-specific (aP2 promote/enhancer 
(484, 487),) or adipose-specific (adiponectin promoter/enhan-
cer (488)) GHRKO mice had lower subcutaneous AT collagen 
content, despite unchanged serum GH/IGF1 levels. 
Furthermore, GH-induced fibrosis is not restricted to the 
AT, as bGH mice show increased fibrosis additionally in small 

intestine, heart, kidney, and tibial cartilage (240). Other stud-
ies have also reported increased collagen synthesis induced by 
acute or chronic GH administration in several non-AT tissues, 
like skin, intestinal myofibroblasts, kidneys, tendons, ischemic 
neural tissues, and rat jejunum, covered by a recent review 
(240). In conclusion, GH action in desmoplasia awaits sys-
tematic investigation, especially in the backdrop of galloping 
advances in current research targeting the TME for cancer 
treatment.

Immunosuppression
Collective information about GH action and immune cell 
interaction (summarized in Table 12) appears to indicate a 
prominent role of GH in the tumor immune microenviron-
ment (TIME) (28, 529). Over the last 30 years, GH gene ex-
pression has been shown in the immune tissues of thymus, 
bone marrow, and spleen (530), as well as in the lymphoid tis-
sues (531). Moreover, GH with autocrine/paracrine action is 
produced by the lymphocytes (496-501) and leukocytes 
(501-503). Autocrine GH promotes lymphocyte proliferation 
(505) and drives autocrine/paracrine IGF1 production in leu-
kocytes (508, 509). Interestingly, lymphocyte GH production 
increases with age (29), while hypoxia, a common feature of 
most solid tumors (532), induces GH production via HIF1 
binding sites at GH gene promoter/enhancer region −176 to 
−172 bp in lymphocytes (more in T cells than B cells) and is 
predicted to have a profound implication in the TME (504).

In tumors, subtypes of innate and adaptive immune cells, 
like the T-regulatory cells (Treg) (533, 534), anti- 
inflammatory (M2-type) macrophages (535, 536), myeloid- 
derived suppressor cells (MDSCs) (537-539), and neutrophils 
(540-542) drive intrinsic and acquired resistance to antitumor 

Table 11. GH action in fibrosis

In vivo Tissue Effect of GH action Reference

healthy young individual Once-daily GH injection; 1 day 4-fold increase in tendon collagen I protein (482)
acromegaly vs normal 

patients
serum increased type I collagen, collagen-specific amino acid 

hydroxyproline, and procollagen III amino terminal 
pro-peptide

(240)

acromegaly vs normal 
patients

urine increased total and nondialyzable hydroxyproline (483)

acromegaly vs normal 
patients

serum increased serum TGFβ in untreated patients (not in treated) (483)

bGH vs wild-type mice adipose tissue increased AT fibrosis (484)
GHKO vs wild-type mice adipose tissue decreased AT fibrosis, collagen content (485)
liver-GHRKO vs wild-type 

mice
adipose tissue increased AT fibrosis, collagen content (486)

fat- or adipose-GHRKO vs 
wild-type mice

adipose tissue decreased AT fibrosis, collagen content (484, 487, 
488)

bGH vs wild-type mice small intestine, heart, kidney, and tibial 
cartilage

increased fibrosis, collagen deposition (240)

bGH vs wild-type mice plasma increased hydroxyproline level (489)
GHRKO vs wild-type mice plasma decreased hydroxyproline level (489)
bGH vs wild-type mice microdissected glomeruli increased TGFβ transcript (479)
multiple mouse tissues skin, intestinal myofibroblasts, kidneys, 

tendons, ischemic neural tissues, and rat 
jejunum

increased collagen deposition (240)

glomerular podocytes kidney increased TGFβ production and signaling (474-476)

Abbreviations: AT, adipose tissue; GH, growth hormone; GHR, growth hormone receptor; TGFβ, transforming growth factor β.
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immune cell infiltration and immunotherapy resistance. In the 
immune subpopulations of AT depots in bGH mice there is in-
creased Treg and macrophage infiltration in the subcutaneous 
and mesenteric AT compared to that in wild-type controls 
(412), while the relative levels of M2-macrophage were upre-
gulated in all AT depots in the bGH mice (412). Notably, GH 
can act as a chemoattractant to recruit monocytes (513) and 
can induce monocyte differentiation and macrophage activa-
tion (514). GH also often induces polarization of activated 
antitumor pro-inflammatory M1-type macrophages to protu-
mor anti-inflammatory M2 types (510-512). Mechanisms 
underlying this role of GH include metabolic reprogramming 
of macrophage via mitochondrial restructuring (393), and a 

PI3K-dependent upregulation of a macrophage anti- 
inflammatory transcription factor MAFB and concomitant 
suppression of pro-inflammatory activin-A (511). 
Interestingly, M2-type macrophages are known to actively se-
crete IGF1 (543) but is unknown if it occurs in a 
GH-dependent manner. However, congenital deficiency/ab-
sence of GH action globally or in macrophages appears to pro-
mote M2-type macrophage infiltration in healthy tissues in 
mice (415, 515).

On the other hand, a recent study presented the transcrip-
tomic profiling of different MDSC subsets in circulation and 
TME of CRC patients, wherein polymorphonuclear/granulo-
cytic MDSCs (PMN-MDSCs) were most abundant (544) 

Table 12. Actions of GH on nontumor cells: putative role at the TME

Cell type Tissue Observation Reference

lymphocytes, leucocytes blood GH expression (496-503)
lymphocytes blood GH production increases with age (29)
lymphocytes (more in T cells, also 

in B cells)
blood hypoxia (HIF1a) induces GH expression (504)

lymphocytes blood GH promotes proliferation (505)
leucocytes blood GH expression suppressed by stress at older age (506, 507)
leucocytes (PBMC) blood GH drives autocrine/paracrine IGF1 production (508, 509)
Macrophage and Treg cells AT stromal vascular fraction (SVF) 

(bGH mice)
GH recruits immunosuppressive cells at AT (412)

Macrophage AT SVF (bGH mice), in vitro GH induces M2-type macrophage polarization (393, 412, 
510, 511)

Macrophage intestine, serum (bGH mice) GH induces M2-type macrophage polarization (511, 512)
Monocyte multiple tissues GH promotes monocyte recruitment (513)
Monocyte, macrophage multiple tissues GH promotes macrophage activation (514)
Macrophage serum (Snell, GHRKO mice) higher M2-type macrophage in GH-deficient and -insensitive 

mice
(515)

polymorphonuclear MDSC serum and TME (CRC patients) increased GH expression and upregulated JAK/STAT 
pathway activation, increased DDR—autocrine loop

(516)

Neutrophil-to-lymphocyte ratio serum of untreated acromegaly 
patients (before and after 
treatment)

elevated in acromegaly patients, partial decrease after corrective 
treatments

(517)

Neutrophil serum (Wistar rat) GH induces neutrophil priming in sepsis model (518, 519)
Neutrophil serum (human subjects) neutrophils express GH (520, 521)
Multiple immune cells serum (acute GH treatment in 

GHD patients)
GH increased monocytes, neutrophils, dendritic cells (DCs), 

decreased activated B cells, cytotoxic- and helper-T cells
(522)

B cells serum (after 12-mo GH treatment 
in GHD children)

reduced B-cell counts (523)

lymphocyte and leukocyte serum (after GH treatment in 
idiopathic short stature children)

decreased lymphocyte and leucocyte counts (524)

CD8+ T cells serum (after GH treatment in 
idiopathic short stature children)

decreased CD8+ T cells, increase in CD4+ T cells (525)

endothelial cells vascular, lymphatic endothelium GH promotes angiogenesis, lymphangiogenesis (382, 386)
mesenchymal stem cell (MSC) in vitro, in vivo differentiation (434-441)
adipocyte adipose tissue (AT) GH drives lipolysis, FFA release (526-528)
3T3L1 adipocyte cell culture increases collagen gene RNA (484)
fibroblasts stroma (skin), tumor sample (BC, 

EC)
GH expression (183)

fibroblasts stroma (skin) fibroblast proliferation (284, 465- 
470)

glomerular podocytes kidney increases TGFβ production and signaling (474-476)

Abbreviations: AT, adipose tissue; BC, breast cancer; CRC, colorectal carcinoma; EC, endometrial cancer; FFA, free fatty acids; GH, growth hormone; GHR, growth 
hormone receptor; TGFβ, transforming growth factor β; TME, tumor microenvironment.
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with a marked upregulation of GH1 expression along with 
that of the JAK/STAT pathway and DDR genes (516), indicat-
ing an autocrine/paracrine GH action with MDSCs as a source 
of GH in the TME. This finding further supports the series of 
work on autocrine/paracrine GH and its role in DDR in colon 
cancer conducted by Chesnokova and colleagues. 
Additionally, IGF1R and INSR overexpression and signaling 
are also major drivers of MDSC-mediated immunosuppres-
sion in the TME (545, 546). Moreover, tumor-associated neu-
trophils (TANs) exert protumorigenic effects (547) and higher 
TAN presence is a biomarker of poorer prognoses in cancer pa-
tients (548). In this regard, a recent study from Poland involv-
ing 62 patients with acromegaly (58 re-evaluated after 
therapy), 134 nonfunctioning pituitary adenoma patients, 
and 120 healthy subjects, have reported a markedly higher 
neutrophil-to-lymphocyte ratio and systemic-immune- 
inflammation index along with lower lymphocyte counts 
than in acromegaly patients who were partly biochemically 
“cured” by corrective surgery (517). Moreover, neutrophils 
also produce both the 22-kDa and 20-kDa GH isoforms 
(520, 521) and can be a source of tumoral GH.

The class I HLA genes (classical: HLA-A, B, C, non- 
classical: HLA-E, F, G, H, J, K, L) along with essential compo-
nents like the β-2-microglobulin (B2M) associate with 
ATP-dependent transporters associated with antigen present-
ing (TAP1, TAP2), tapasin (TAPBP), and multiple chaperone 
proteins constituting the class I MHC complex, which is ubi-
quitous in all cells and generally present endogenous antigens 
to CD8+ T cells for detection and elimination of aberrant cells. 
The antigen presenting cells (APCs) (eg, macrophages, den-
dritic cells, and B cells) can also cross-present extracellular 
proteins via the MHC-I complex after phagocytosis/internal-
ization. To avoid this method of immune detection and elim-
ination, tumor cells adopt several methods, including: (i) 
suppressing T-cell recruitment by modulating the expression 
of immune-inhibitory surface proteins (eg, PDL1 and PDL2 
binds to receptor PD1) (549); (ii) suppression of the HLA class 

I genes (550, 551); and (iii) suppressing the infiltration of anti-
tumor immune cells from entering the TME. Of these, 
GH-regulated immunosuppression modalities have been dis-
cussed in “Avoiding immune destruction” above. From ana-
lyzing the human tumor transcriptomic data for > 10 000 
cancer patients for 30 different cancer types in the TCGA da-
taset, we found that GHR expression consistently correlated 
inversely with a pan-cancer expression of all components of 
the HLA class I system in patient tumor samples of 25/30 can-
cer types (Fig. 11A), implicating GH action with suppressed 
tumoral MHC class I presentation. Further, we also see mark-
edly consistent pan-cancer inverse correlation of GHR expres-
sion with reduced tumor infiltration levels of multiple major 
antitumor immune cell types, such as activated CD8+ T cells, 
activated and central memory CD4+ T cells, CD50-dim and 
CD56-bright natural killer (NK) cells, and activated dendritic 
cells (DCs) (Fig. 11B), each of which associate with poorer 
therapy response and prognoses in several human cancers 
(552-554). A recent landmark study by Gujral et al, from 
the Icahn School of Medicine at Mt. Sinai, reports the acute 
effect of GH in 54 GHD pediatric patients (22 tested positive 
for GHD) at baseline and over the course of 3 hours after a 
GH stimulation test (522). A significant increase in circulating 
monocyte, DCs, and granulocytes (especially neutrophils) and 
significant decreases in cytotoxic and helper T cells and acti-
vated B cells over the course of 3 hours following GH stimu-
lation, was observed. In fact, a significant suppression of 
B-lymphocytes by GH has been reported in multiple prior 
studies (523-525).

It is to be noted that in the above cases of patients with GHD 
treated with GH, despite reported changes in lymphocyte com-
position, no supra-normal risk of infections was observed with-
in the follow-up periods. Importantly, no differences in 
infectious diseases or immune response were observed in the 
lifetime of untreated congenital GHD patients, compared to 
GH-sufficient control subjects (555), while patients with iso-
lated congenital GHD in the Itabaianinha cohort (Brazil) are 

Figure 11. Pan-cancer correlation of GHR RNA expression with (A) human leucocyte antigen [HLA], the human MHC class I and class II gene, RNA 
expression; and (B) tumor-infiltrating lymphocytes (TILs) in patient tumor samples across 30 different cancer types (TCGA datasets; generated using 
TISIDB platform).
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less sensitive to highly endemic parasitic infection from 
Leishmania amazonensis (556) and also had lower confirmed 
cases and disease progression with SARS-CoV-2 infection 
than controls (557). Similarly, no cases of endemic Chagas dis-
ease resulting from Trypanosoma cruzi parasitic infection have 
been reported in the Ecuadorian cohort of individuals with LS, 
despite high prevalence in relatives, wherein high serum GH 
levels appear to be protective (558). These observations provide 
a robust impetus to the investigation of GH-immune interac-
tions and modulation of the same in cancer.

Putting together the multiple aspects of GH’s interaction 
with the immune cell types known to date, it can be reasonably 
postulated that presence of GH in the TME may promote an 
immunologically “cold” tumor state which is resistant to im-
munotherapy (559). Therefore, a thorough investigation of 
the extent and details of GH’s ability to modulate immuno-
therapy outcomes in cancer should be pursued.

Adipose tissue dysregulation
Tumor proximal AT has now been established to have a 
prominent role in tumor progression, invasive growth, metas-
tases, immunosuppression, drug resistance, and ECM remod-
eling/fibrosis/desmoplasia in the TME (560, 561). Tumors 
often tutor proximal AT to include adipocytes in the TME, 
dubbed cancer-associated adipocytes. These cancer- 
associated adipocytes undergo lipolysis and contribute a sup-
ply of FFAs, which allow several tumor-supporting roles like 
metabolic reprogramming via upregulation of fatty acid oxi-
dation and supply of growth factors and immune modulating 
cytokines, as well as transdifferentiate into stromal compo-
nents like fibroblasts and myofibroblasts to drive desmoplasia. 
Due to the rapidly advancing understanding of AT biology 
and the abundant expression of GH and GHR and their prom-
inent endocrine actions in the AT, a significant body of studies 
on how GH affects the overall health of AT is available, of 
which GH-regulated AT fibrosis has been mentioned in 
“Extracellular matrix remodeling/fibrosis” above. 
Collectively, this work provides ample hints to address the 
question of how an ectopic and possibly excess production 
of GH from a tumor site might affect the proximal AT.

Surprisingly, GH and AT in the context of cancer have not 
yet been approached and thus present an exciting and promis-
ing area of investigation. While the physiologic function of 
endocrine GH is lipolytic, endocrine GH excess or deficiency 
differentially causes lipodystrophy in AT (526-528). 
Moreover, reports on the role of autocrine/paracrine GH in 
AT are sparse. GH primarily promotes breakdown of adipo-
cyte lipids, ultimately releasing FFA that can be taken up by 
frequently observed upregulation of tumoral fatty acid trans-
porters and act as fuel for altered metabolism in tumor cells 
(394). It is expected, but unknown, whether and how 
TME-derived GH exerts this action on cancer-associated adi-
pocytes in a paracrine fashion. Moreover, an increase in FFAs 
increases insulin resistance in a systematic manner (562), 
which is consistently associated with poorer therapeutic re-
sponse, higher recurrence, and poorer OS in almost all cancer 
types (discussed further later) (563, 564). Insulin resistance/ 
hyperinsulinemia is indeed a frequent characteristic of GH ex-
cess and is similarly observed in humans and in mouse models 
(see “Promoting insulin resistance” below). Furthermore, 
GH-mediated release of FFA also upregulates fibroblast 
growth factor 21 (FGF21) expression in the liver tissues 

(565), while the serum FGF21 levels are known to be elevated 
in GH transgenic mice (566). This is important, as recent re-
ports show that FGF21 in turn exerts immune exhaustion of 
CD8+ T cells (567).

In mouse models of suppressed GH action (ie, Ames, Snell, 
lit/lit, GHRKO, GHKO, and GHA mice) increased adiposity 
compared to GH-sufficient wild-type littermates has been re-
ported, surprisingly alongside improved insulin sensitivity 
(568, 569), indicating that despite increase in “quantity,” 
there has been improvements in the “quality” of fat tissue 
(528, 570), which is an important consideration given that 
AT quality affects TME. For example, AT from GHD Snell 
mice or GH-insensitive GHRKO mice both have lower levels 
of AT-derived tumor necrosis factor α, interleukin-6, mono-
cyte chemoattractant protein 1 (515), and IGF1 (571) and 
higher levels of adiponectin, which elicit several anticancer 
benefits (568, 572, 573). Contrastingly, the bGH mice have 
elevated AT-derived IGF1 (571) and higher senescent cell bur-
den in the AT (417). Importantly, AT houses a large number 
of nonadipocyte cells in the SVF, which altogether determine 
AT “quality.” Five-month-old bGH mice were found to have 
decreased adiposity with reduced percent fat mass in adipose 
and mesenteric (visceral) AT depots, which showed a signifi-
cant increase in proportion of SVF cells, including significant-
ly higher percentage of macrophages and Treg cells. 
Additionally, 9/10 of the most significantly altered pathways 
in the subcutaneous AT depot in bGH vs wild-type mice 
were immune related (412, 574). In the same study, additional 
enrichment of tumor-supportive pathways, including in-
creased fatty acid oxidation, high degree of ectopic gene ex-
pression, and branched-chain amino acid (BCAA) 
degradation (an indicator of IGF1 production) (575) are ob-
served in bGH subcutaneous AT (574, 576). Fibrosis, a major 
corollary of excess GH action, has been exemplified by the AT 
and discussed in “ Extracellular matrix remodeling/fibrosis” 
above. Overall, it is apparent that excess or ectopic GH action 
has the potential to modulate the AT into tumor-supportive 
functionalities; this remains to be empirically validated.

Therefore, it is timely and necessary to clarify if and which 
of the known actions of GH in immune cells, adipocytes, fi-
broblasts, and endothelial cells are triggered under the effect 
of ectopic GH from a GH-secreting tumor of different types 
of cancers. It is of further value to ascertain what fraction of 
the GH (and IGF1) at the TME is contributed by tumor and 
nontumor cells and its localized effects by single-cell analyses 
methods. Given the remarkable heterogeneity of a tumor, we 
can expect specific subpopulations of tumor cells (and nontu-
mor cells) in the TME to be expressing either GH or GHR or 
both. Moreover, it would be valuable to identify the variabil-
ity and distribution of GH active cells in the TME and trace 
their origins and clinical implications.

Indirect Actions of GH in Cancer
Two specific and well-studied actions of endocrine GH that 
have profound effects in cancer are GH-mediated endocrine 
IGF1 production and systemic insulin resistance, which are 
briefly summarized below:

IGF1 production
GH binding to the GHR activates the JAK2-STAT5B pathway, 
which induces IGF1 gene expression from liver (>75% of se-
rum) and multiple nonhepatic tissues (altogether < 25%: 
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skeletal muscle, AT, kidney, immune cells, cartilage tissue). 
However, GH-induced IGF1 production, although not con-
sistently observed in human and mouse tumor cells, exerts po-
tent growth-promoting effects in the TME, as IGF1R 
expression is extensive in the tumor and nontumor cells. The 
IGF/insulin family has not only been heavily implicated in driv-
ing cancer progression, but also has been extensively pursued 
in pharmaceutical clinical trials. Our current review under-
takes a discourse on the exclusive association of GH in cancer. 
Although no discussion of GH in cancer is complete without 
acknowledging the role of IGF1, it is beyond the scope of 
this review to accommodate detailing the role of IGF1 or 
IGF2 in promoting IGF1R and INSR activation. Moreover, al-
though IGF1 amplifies several of the actions of GH, both GH 
and IGF1 have mutually exclusive physiologic actions in health 
and disease, including in cancer. In this regard, we encourage 
our readers toward excellent reviews on IGF/insulin—cancer 
association (564, 577-579).

Endocrine GH action on the liver induces the production of 
IGF1 as well as IGF1 sequestering IGFBP3 and acid-labile sub-
unit (ALS), raising a concern more than 20 years back whether 
the IGF1-IGFBP3 complexation would negate the 
IGF1-mediated cancer-promoting effect of GH (580). 
Updated research findings help address this concern: (i) the 
endocrine GH action of hepatic IGF1 and IGFBP3 production 
is markedly reduced by somatopause, which coincides tem-
porally with the vast majority of oncogenic events, thus chal-
lenging the role of endocrine GH and emphasizing the role of 
autocrine/paracrine GH in cancer; (ii) unlike endocrine GH, 
autocrine/paracrine GH is rarely is not known to induce 
IGFBP3 in peripheral tissues or the TME; and (iii) GH has 
been reported in multiple cancers to induce matrix metallo-
proteinases like MMP9 (as a corollary of switching on the 
EMT program), which are known to cleave IGFBPs to release 
sequestrated IGF1 in the TME (109).

IGF1R is a highly expressed tyrosine kinase receptor that is 
activated almost equipotently by IGF1 and IGF2 and often 
forms heterodimers with the INSR-A (581-583). Several tu-
mors of epithelial and mesenchymal origin have a robust auto-
crine IGF2 loop with aggressive and therapy-resistant 
malignancies, together called “IGF2-omas,” and are import-
ant in IGF1R action in cancer (reviewed by (583-587)). IGF1 
can be produced at the TME irrespective of GH stimulation 
and can activate highly expressed IGF1R on site, exerting 
tumor-supportive actions like blocking apoptosis, increasing 
DDR, promoting migration invasion and anchorage independ-
ent growth, inducing EMT, promoting angiogenesis, regulat-
ing tumoral glucose uptake and metabolism, and 
orchestrating immune-suppression (reviewed in (577-579)). 
IGF1R activation also supports tumoral therapy resistance (re-
viewed in (204)), while nuclear localization of IGF1R blunts 
the efficacy of IGF1R mAbs (579). The stunning near-complete 
protection from cancer observed in patients with LS is ascribed 
to almost undetectable levels of circulating IGF1, due to com-
plete absence of GH action caused by inactivating mutations of 
the GHR (101). Multiple studies using cells from the LS pa-
tients have revealed multiple tumor-protective and decelerated 
aging pathways (588-592), which is a function of attenuated 
endocrine, autocrine, and paracrine reception of GH signal. 
Overall, attenuating endocrine GH action suppresses endo-
crine IGF1 production and thereby suppresses the protumor 
actions of IGF1—observable in human patients with GHD, 
LS, and numerous mouse models of deficit of GH action.

Promoting insulin resistance
Diabetes, specifically type 2 diabetes mellitus (T2DM), mostly 
associated with obesity and characterized by hyperinsulinemia 
and peripheral insulin resistance, is a risk factor for particular 
cancers including that of pancreas, breast, cervix, prostate, endo-
metrium, ovary, and colon (593-596). Insulin exerts robust 
mitogenic action and cellular growth-promoting action via 
INSR downstream PI3K/AKT/mTOR and IRS/MAPK signaling 
activation. In the case of T2DM, although some of the body’s 
metabolic tissues may acquire unresponsiveness to insulin, tu-
mor cells express functional INSR and respond to the insulin ex-
cess as a tumor fuel (564). Moreover, anticancer therapies often 
induce insulin resistance in patients as an adverse effect (597, 
598). Hyperinsulinemia is consistently associated with a 25% 
to 41% increased risk of mortality from any cancer (563, 564, 
595, 599-602), thus making cancer one of the leading cause of 
mortality in patients with diabetes (602, 603).

As early as 1931, Houssay and Biasotti reported the diabe-
togenic actions of anterior pituitary extracts, indicating that a 
high propensity of diabetes in acromegaly is perhaps an out-
come of this phenomenon (105). Several subsequent reports 
have validated this critical observation (604-609), and it is 
now well established that GH is diabetogenic and promotes 
insulin resistance. In fact, secondary diabetes mellitus is found 
in 55% of the patients with acromegaly (610) and is an im-
portant aspect of acromegalic comorbidity (611). Notable 
studies in human patients and in mouse models have further 
detailed the underlying mechanisms and have been extensively 
reviewed (390, 612-615). Importantly, in congenital mouse 
models of GHD (Ames, Snell, Ghrh null, lit/lit, GHRKO, 
GHA, and the GHKO mouse (569)), and even postnatal at-
tenuation of GH action (inducible-GHRKO and AOiGHD 
mice (616-618)), all have improved insulin sensitivity com-
pared to age-matched littermates, despite higher liver trigly-
ceride content (reviewed in (569)). Importantly, the 
improvement in insulin sensitivity in these mouse models of 
decreases GH action, despite a significantly higher fat mass 
(and often higher liver triglyceride content), and thus empha-
sizes the intricate modulatory effect of GH action on AT for 
promoting insulin resistance. This is similar to the improved 
insulin sensitivity observed in the Ecuadorian cohort of pa-
tients with LS patients, and the 2 cohorts of patients with 
GHD from Itabaianinha, Brazil and from the island of Krk, 
Adriatic Sea. On the other hand, early onset insulin resistance 
leading to hyperinsulinemia and T2DM despite reduced body- 
fat, is a metabolic hallmark of untreated acromegaly (619). To 
reiterate, in mice and human subjects of decreased GH action 
and increased insulin sensitivity, cancer incidence and pro-
gression is also markedly lower.

Pulsatile GH and insulin signaling constitute a delicate 
metabolic homeostasis in the normal system and have distinct 
effects on mutual receptor expression. As shown by multiple 
studies, chronically high GH signaling in the case of GH ex-
cess provokes compensatory insulin production, causing hy-
perinsulinemia. Sustained exposure to insulin downregulates 
INSR expression, further stabilizing hyperinsulinemia and 
leading to T2DM (620). Generally, GH is lipolytic in action 
and increases blood glucose levels by increasing hepatic gluco-
neogenesis, while insulin is lipogenic and decreases blood glu-
cose levels by glucose uptake and suppression of hepatic 
gluconeogenesis. GH interferes with insulin signaling and glu-
cose uptake primarily via upregulation of p85α regulatory 
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subunit of PI3K, and an increase of FFA (390, 562, 613). 
Moreover, AT cellular senescence is a feature of T2DM with 
tumor-supportive action (621) and is decreased in mouse 
models of decreased GH action, while bGH mice have higher 
susceptibility to develop diabetes but not obesity on high-fat 
diet (622). Lastly, in HiGH mice, which have elevated GH 
and IGF1 due to somatotrope-specific ablation of IGF1R 
and InsR, increased DMBA-induced mammary tumor growth 
was observed when put on a high-fat rather than a normal 
chow diet (202). Although this outcome can be secondary to 
intrinsic insulin resistance in HiGH mice, these animals are 
a good model to assess whether GHR antagonism mediated 
improvement in insulin sensitivity counteracts high-fat 
diet-promoted neoplastic incidence. Several excellent reviews 
have summarized the empirical and mechanistic details of the 
diabetogenic actions of GH (114, 613, 614, 623).

Can tumor-derived GH induce hyperinsulinemia? In ab-
sence of direct studies, this question can be answered by indi-
cating that changing localized GH action in just one tissue 
can indeed influence systemic insulin sensitivity, as is observed 
in the case of visceral fat transplanted from GHRKO to wild- 
type mice, improves insulin sensitivity and glucose tolerance 
(624). Moreover, pharmacologic inhibition of GHR with peg-
visomant have repeatedly and consistently shown an improve-
ment in insulin sensitivity across multiple studies in patients 
with acromegaly (625-632), markedly superior to the pre-
scribed peptide analogs of SST, which have frequent hypergly-
cemic side effects (633, 634). Therefore, in the treatment of 
cancer, GHR antagonism is a clinically appealing proposition 
as a method to improve antineoplastic efficacy, with improve-
ment of insulin sensitivity and suppression of IGF1 as putative 
“side effects” (635).

Promising Therapies Targeting GH Action 
in Cancer
The presence of an active IGF/insulin system determining life-
span in invertebrates like C. elegans and D. melanogaster, and 
appearance of the GH/GHR homologue much later in the basal 
chordate amphioxus (636), indicates that IGF1/insulin predates 
GH in evolution as a growth factor. Therefore, modulating GH 
action can be used as an indirect regulator of physiologic actions 
of IGF1/insulin, as exemplified by studies from numerous animal 
models in this area as well as human pathologies and observa-
tions from pharmaceutical agents targeting the GH axis. At 
this point, it is apparent that molecules that can attenuate GH ac-
tion can also have applications in improving the efficacy of anti-
cancer therapies, including radiation, chemotherapy, targeted 
therapy, and immunotherapy. There is active pharmaceutical 
interest in developing potent inhibitors of GH action by virtue 
of its provocative indications in cancer as well as proven applica-
tion in acromegaly, and potential uses in glomerulopathies, insu-
lin resistance, diabetic comorbidities like diabetic nephropathy 
and retinopathy, or in promoting healthy aging (637). These 
agents can target either GH production (GHRHR inhibitors, 
SST analogs, dopamine agonists), or GHR synthesis (small mol-
ecule, oligonucleotides), or GHR activation (anti-GHR mAb, 
modified human GH analogs, antisense oligonucleotide, small 
molecules). A series of timely and exhaustive reviews continue 
to enlist, detail, and compare these approaches (70, 638, 639). 
Below, we briefly summarize some of these strategies of inhib-
ition of GH action (Table 13) that are or can be relevant in anti-
cancer applications.

Inhibition of GH Production

GHRHR antagonists
Andrew Schally and colleagues have pioneered the develop-
ment and use of GHRH (and GHRHR) antagonists (including 
long-acting isoforms) for more than 30 years, toward possible 
applications in acromegaly, diabetic retinopathy, and cancer 
by blocking GH-induced local IGF1 production (640-644). 
Similar to GH, expression of extrapituitary GHRH (668) 
and splice variants of GHRHR in multiple cancers, including 
breast, prostate, lung (669), esophageal (670), endometrial 
(671), thyroid (672), gastrointestinal (673), and melanoma 
(674) were observed. Consequently, GHRH or GHRHR an-
tagonists have shown efficacy in a series of human cancer 
cell lines and rodent xenograft studies (675) in promoting 
apoptosis and blocking proliferation, EMT induction, and 
therapy resistance. These include cancers of prostate (676, 
677), breast (678, 679), pituitary adenoma (680), lung (681, 
682), esophagus (670), thyroid (683), endometrium (684), 
ovarian (685), gastric (686), melanoma (674), glioblastoma 
(687), mesothelioma (688), pheochromocytoma (689), osteo-
sarcoma (690), Ewing sarcoma (690), and acute myeloid leu-
kemia (691). However, GHRH-GHRHR regulated GH and/ 
or downstream IGF1 production from tumors is not a consist-
ent feature of any particular cancer type and highly variable 
and often absent from one cell line to another in the same can-
cer type.

Somatostatin analogs
A large proportion of neuroendocrine tumors express SST re-
ceptors (SSTRs), although SST-induced endocrine 
GH-mediated IGF1 production is not the exclusive target of 
SSTR inhibition in cancer. SST-SSTR have also been reported 
in gliomas (692), melanoma (645), CRCs (693), thyroid cancer 
(694), and breast cancer (695). Different SST analogs target dif-
ferent SSTRs and although the classical SST peptide analogs oc-
treotide and lanreotide (SSTR2, SSTR5 inhibitors) have shown 
efficacy in reducing serum IGF1 levels in subsets of patients with 
acromegaly, their anticancer efficacy as monotherapy has not 
been promising so far (696). Relatively better treatment re-
sponses were observed in some clinical trials in combination 
with chemo- or targeted therapies, especially for neuroendocrine 
tumors (696). Second-generation multi-SSTR inhibitors, such as 
pasireotide (SOM230), have shown better response in systemic 
IGF1 suppression and treatment of pituitary tumors in Cushing 
syndrome (646) and in preclinical studies with human meningi-
oma (647), melanoma (295), bronchial carcinoma (648), and 
corticotroph adenomas (649), although insulin resistance is a 
frequently observed side effect in pasireotide treatment (697). 
Recently developed orally active nonpeptide selective SSTR2 ag-
onists against acromegaly, such as paltusotine, have shown 
some promising data against carcinoid syndrome including neu-
roendocrine tumors (see https://crinetics.com/pipeline/ 
paltusotine-acromegaly-nets-carcinoid-syndrome/; phase 2). 
Overall, targeting the SST-SSTR axis for blocking GH action 
in cancer has not been clinically beneficial.

Dopamine agonists
Cabergoline is an ergot-derived small molecule agonist of the 
dopamine D2 receptors (698), used to treat hyperprolactine-
mia. Cabergoline has low efficacy in few patients with acro-
megaly (699, 700). In a phase 2 pilot study for metastatic 

Endocrine Reviews, 2025, Vol. 46, No. 2                                                                                                                                                        259
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article/46/2/224/7917538 by guest on 17 April 2025

https://crinetics.com/pipeline/paltusotine-acromegaly-nets-carcinoid-syndrome/
https://crinetics.com/pipeline/paltusotine-acromegaly-nets-carcinoid-syndrome/


breast cancer, cabergoline achieved negligible overall response 
with disease control in a small subset of patients (650).

Inhibition of GHR Synthesis

Small molecules
A small molecule series (BM-001, -002, -003) has been recent-
ly developed by the University Medical Center, Utrecht, 
Netherlands which targets GHR synthesis (651), from a 
screening of a 38 480-compound library. Of these, BM001 
(injected thrice/week for 3 weeks) suppressed serum IGF1 by 
73% (blocking endocrine GH) and caused significant and dur-
able reductions in human breast cancer xenografts in im-
munocompromised mice (blocking autocrine/paracrine GH) 
(651).

ATL oligomers
The 2′-O-(2-methoxyethyl)-modified phosphorothioate oligo-
deoxynucleotides (ATL-227446, -261303, -260120, -1103) 
targeted against the GHR mRNA (652, 701, 702) have shown 
IGF1 lowering efficacy in mice. Of these, ATL1103 (a 20-mer 
oligodeoxynucleotide, now “Atesidorsen”), was tested in a 
phase 2 clinical trial for acromegaly, where at a once/twice 

per week dosing for 14 weeks, it achieved a median reduction 
of 27.8% in serum IGF1 levels (652). No cancer studies with 
the ATL oligos have been reported and the ATL molecule 
has been discontinued.

Inhibition of GHR Activation

Modified GH analogs
Although the biochemical structure was identified in 1971, it 
was not until 1992 that the first crystal structure of human 
GH bound to GHR was reported (703). Based on the biochem-
ical structure, we were successful in discovering the first antag-
onist of the mouse GHR in 1990 (704) and the first antagonist 
of the human GHR soon after (653). This modified GH analog 
is a competitive inhibitor of the GHR and proceeded to be the 
first (and to date only) FDA-approved GHR antagonist: pegvi-
somant (marketed as Somavert by Pfizer Inc.), prescribed for 
the treatment of acromegaly (reviewed in (66, 705)). B2036, 
the core peptide of pegvisomant, harbors a total of 9 amino 
acid substitutions, of which the G120K confers binding inter-
ruptions at site-2 of GH-GHR (see “Beginning and End of GH 
Signaling”) while the remaining substitutions allow improved 
binding at site-1, as well as attenuates binding to PRLR and 

Table 13. Molecules and methods for attenuating human GH action

Molecule Type Origin Tested 
anticancer effects

Reference

Inhibitors of GH production
GHRHR antagonists peptide Andrew Schally and colleagues Yes (640-644)
SST analogs peptide Novartis, Ipsen Yes (295, 645-649)
Dopamine agonists small molecule Par Pharma Yes (650)
Inhibition of GHR synthesis
BM-001 small molecule University Medical Center, Utrecht, 

Netherlands
Yes (651)

ATL oligomers antisense 
oligodeoxynucleotide

Antisense Therapeutics, Australia No (652)

Inhibition of GHR activation
G120R-hGH, B2036 peptide Kopchick and colleagues, Ohio University Yes (70, 639, 653)
pegvisomant peptide Pfizer Inc. Yes (70, 639, 653)
B2036 site-specific pegylations peptide Perry, Maynard and colleagues No (654, 655)
hGH-G120 K site-specific pegylations 

(compound-G, compound-D)
peptide (GHR, PRLR dual 

inhibition)
Kopchick and colleagues, Ohio University 

and InfinixBio, Columbus, OH
Yes (656)

S1H (16 amino acid) peptide (GHR, PRLR dual 
inhibition)

Kopchick, Holub and colleagues, Ohio 
University

No (657)

AZP3813 (16 amino acid) peptide (bicyclic) Amolyt Pharma, Netherlands and 
PeptiDream, Japan

No (658)

mab18.24 monoclonal antibody (mAb) Frank and colleagues No (659)
GF185 mAb — No (660)
CG86 mAb — No (661)
RN172 mAb Pfizer Inc. No (639)
H53 bispecific (GHR, PRLR) 

mAb
Chen and colleagues, The First Hospital of 

Jilin University, China
yes (79)

BVT-A small molecule Swedish Orphan Biovitrum AB (SOBI) No (662)
GHR-blockers small molecules, mAbs Longo and colleagues No patent 

US10246446B2
Fasting mimicking diet (FMD) dietary supplement L-Nutra (Longo and colleagues) Yes (663-667)

Abbreviations: GHR, growth hormone receptor; GHRHR, growth hormone releasing hormone receptor; PRLR, prolactin receptor; SST, somatostatin.
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non-primate GHRs (70, 639, 706). Meta-analyses of multiple 
clinical trials including ACROSTUDY (2221 patients) span-
ning 15 countries across 2004-2017 (707) and subsequent 
studies (632, 708) over the last 20 years have reported pegvi-
somant to be highly efficacious in systemically blocking GH ac-
tion, alongside improving insulin sensitivity, with minimal 
adverse side effects in human patients. Pegvisomant is pegy-
lated with a variable number of 5-kDa polyethyleneglycol 
(PEG) per peptide molecule leading to >72-hour half-life in hu-
mans (∼24-hours in mice).

Multiple recent studies, including by us, have sought to de-
vise improved modified GH analogs as GHRAs by employing 
different pegylation methods (638). Of these, Perry and 
Maynard have reported 3 different approaches using B2036 
as the core peptide: (i) attaching 4 to 7 amine-reactive 
5-kDa methoxy-PEG succinimidyl propionate residues, re-
sulting in a 15-hour half-life in mice (709); (ii) substituting un-
natural amino acid propargyl tyrosine at Y35 position to 
allow site-specific attachment of 20-kDa methoxy-terminated 
PEG via click chemistry leading to a 12.5-fold improvement 
over pegvisomant in attenuating Ba/F3-hGHR cell prolifer-
ation (654); and (iii) a 40-kDa methoxy-PEG maleimide 
site-specifically attached to a cysteine substituted at S144 pos-
ition, leading to a 58.3-hour half-life in mice and reduction of 
serum IGF1 by > 50% at a low dose of 10 mg/kg/day (655). 
Our group has developed a library of GH analogs using differ-
ent combinations of branched and charged/uncharged PEGs 
of different molecular masses for site-specific attachment at 
specific substituted cysteine residues on the G120K-hGH as 
the core peptide (656). Of these, compound-G (2 charged, 
branched 4.5-kGa PEGs at cysteines incorporated at T142 
and H151 positions), at 100 mg/kg/day dosing, reduced 
mouse serum IGF1 by 28% and IGFBP3 by 50% in 1 week 
(656). Importantly, unlike B2036, G120K-hGH does bind 
to the PRLR, as does compound-G, which acts as a dual in-
hibitor of both GHR and PRLR activation and has shown 
consistent in vitro and in vivo anticancer effects, prompting 
further developmental work.

Small peptide inhibitors
A unique approach at disrupting the site-1 binding of 
GH-GHR was adopted by mimicking the amino acid residues 
36-51 in the human GH peptide, which constitutes the mini he-
lix important for the human GH binding to the human GHR 
and PRLR (657). This 16-amino-acid peptide has shown ro-
bust inhibition of GH-GHR, GH-PRLR, and PRL-PRLR in-
hibition in vitro and is currently under active development.

A second peptide antagonist of GHR has been reported recent-
ly from a collaboration between a Dutch and Japanese biophar-
ma. Their candidate compound—AZP3813—a 16-amino acid 
bicyclic peptide, has shown IGF1 lowering effects in SDR rats 
(658), as well as in beagle dogs (710). In 2023, AZP3813 entered 
phase 1 human clinical trials for the treatment of acromegaly.

Monoclonal antibodies
One of the first reports on mAbs against GHR was presented 
by Frank and colleagues in 2011, where anti-GHR 
(mab18.24) reportedly blocked GHR signaling by blocking 
site-2 interaction sites of GH-GHR (659). Subsequently, 3 
more GHR-targeting antibodies have been reported (GF185 
(660), CG86 (661), and RN172 (639)) with in vitro and in 

vivo efficacies, but they do not have any follow-up reports 
or cancer-related results.

Interestingly, an anti-idiotypic bispecific antibody (H53) 
against GHR and PRLR has also been developed and has 
shown inhibitory potency against breast cancer models in cells 
and nude mice xenografts (79).

Of note, in an attempt to create a longer-acting GHRA, a 
fusion protein of the GH binding protein with an amino acid- 
substituted human GH (G120R, W104A) was constructed by 
Wilkinson et al; the molecule showed a half-life of 40.5-hours 
in rabbits, with a 14% decrease in serum IGF1 over 7 days 
after a single injection (711).

Small-molecule GHRAs
There are currently 2 reports of small molecule inhibitors of 
the GHR. One of the first reports was from the Swedish 
Orphan Biovitrum AB (SOBI), concerning a low molecular 
weight compound BVT-A, which showed IGF1-lowering ef-
fects in SDR (662) and a second from Longo and colleagues 
who disclosed a number of small molecules aimed at attenuat-
ing GHR action in 2019 (patent US10246446B2). To date, 
follow-up reports or results on cancer-related uses are not 
available from either.

Fasting Mimicking Diet
Short-term fasting increases serum GH and IGF1 levels, while 
extended fasting (> 3 days) induces peripheral GH resistance 
due to lack of insulin action (reviewed in (712)). The clinical 
success of fasting mimicking diet (FMD, low-protein, low- 
calorie, plant-based, 5-day dietary intervention) by Longo 
and colleagues, is another excellent example showing that 
suppression of IGF1 and insulin can have clinical benefits in 
multiple pathophysiology including cancer (713, 714). In can-
cer, FMD supplementation in human patients has synergized 
with chemotherapy (663) and targeted therapies (664) in leu-
kemia and promoted antitumor immunity (715). FMD has 
also improved immunotherapy efficacy, with reduced 
immunotherapy-related adverse events and tumor-associated 
macrophage activity in multiple mouse models of breast can-
cer (665-667). Moreover, in relevance to tumor-promoting ef-
fects of GH/IGF, in preclinical animal models and clinical 
trials, FMD appears to exert several broad-spectrum anti-
cancer effects, including an increase in lifespan with major re-
ductions in inflammatory diseases and tumor incidence (716), 
decrease of visceral fat, rejuvenated immune system, de-
creased biomarkers of cancer (716), protection from insulin 
resistance from high-fat high-calorie diet (717), reversal of 
diabetes (718), improved glycemic control in T2DM patients 
(719), reduced insulin resistance, reduced prediabetes 
markers, and improved cardiometabolic and immune age in 
randomized clinical trials (720).

Lessons in GHR Targeting From IGF1R Targeting in 
Cancer
A 2023 JAMA report summarized that in the last 2 decades 
(2000-2021), 183 clinical trials have studied 16 IGF1R candi-
date inhibitor molecules across 12 000 patients at a cost of 
$1.6 billion in research and $2.3 billion in development ex-
penses (721, 722). These trials included 9 monoclonal anti-
bodies (including Pfizer’s figitimumab, Merck’s 
dalotozumab, Amgen’s ganitumab), 6 small-molecule inhibi-
tors (also RTK-inhibitors), and 1 antisense 
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oligodeoxynucleotide targeted against IGF1R (579, 721). 
Unfortunately, all of the IGF1R targeting agents failed to live 
up to the promise of clinical efficacy in any of the late-phase 
cancer trials (reviewed in (579, 723)). Essential insights, highly 
relevant to GHR targeting in cancer, can be obtained from the 
mechanisms underlying this result (723, 724). Some of the 
prominent mechanisms by which IGF1R inhibition was over-
ridden in target tumors in vivo can be summarized as: (i) com-
pensatory signaling (by IGF1, IGF2, INS) via INSR; (ii) 
compensatory signaling via increased (endocrine) GH produc-
tion (de-repression of negative feedback inhibition by 
IGF1-IGF1R at hypothalamic-pituitary axis); (iii) compensa-
tory signaling by EGFR (an otherwise hetero-dimerization 
partner of IGF1R); (iv) nuclear localization of IGF1R; (v) 
lack of biomarkers of disease response beyond serum IGF1; 
and (vi) poor patient selection.

In the case of GHR antagonism, the clinical efficacy of pegvi-
somant is an excellent example of FDA-verified clinical safety, 
tolerability, and effectiveness of systemic GHR antagonism 
with a highly specific molecule, and possible clinical counter- 
mechanisms of compensation. As discussed above, a peptide mi-
metic GHRA (eg, pegvisomant and other biosimilars), in add-
ition to systemically blocking GH-GHR activation (endocrine, 
autocrine, paracrine), can mechanistically offer additional sig-
nificant advantages up front because: (i) Systemic GH-GHR in-
hibition lowers endocrine IGF1 production; importantly, in the 
dose-escalation trials, pegvisomant lowered both serum IGF1 
and IGF2, thus dampening IGF1R ligand supply; (ii) Systemic in-
hibition of GH-GHR action lowers development of insulin re-
sistance, which has beneficial effects in cancer prognoses; (iii) 
Possible signaling from excess GH via binding to PRLR, does 
not appear to compensate GHR blockade (eg, in case of acro-
megaly treatment), although responses in oncology could be dif-
ferent. However, dual antagonists of GHR and PRLR are 
effective suppressors of possible compensatory GH-PRLR sig-
naling; (iv) Pegvisomant can effectively inhibit nuclear localiza-
tion of GHR as well as surface GHR; and (v) GHR-EGFR or 
GHR-IGF1R cross-interactions require active GHR-associated 
JAK2 for effect. In the absence of GHR activation, reduced com-
pensation from these other RTKs can be speculated, but are sub-
ject to experimental validation. Additionally, adequate 
biomarkers of successful GHR antagonism (beyond serum 
IGF1 suppression) are essential to confirm anticancer benefits. 
For example, some additional biomarkers of effective GHR 
blockade are concomitant decrease in hepatic IGFBP3 and 
ALS, as well as suppression of SOCS2 and CISH expression. 
Moreover, progressive and dose-dependent lowering of markers 
of disease progression, like CA-19-9 (for gastrointestinal cancers 
of liver, pancreas, gastric, colorectal, and some other types) are 
also clinically valuable. Lastly, appropriate patient selection 
based on high-resolution quantification of tumor gene expres-
sion will be an essential step for effecting clinically durable suc-
cess in future trials.

Overall, it is apparent that the use of inhibitors of GHR syn-
thesis in cancer are contingent upon tumoral GH synthesis 
being under the control of the corresponding regulatory cir-
cuit. In comparison, inhibitors of GHR synthesis or activation 
can provide a definite systemic blockade of GH reception, al-
though GH-PRLR interactions are not attenuated by these. 
Herein, dual inhibitors of GHR and PRLR can be a better fit 
for use, especially in cancers with high PRLR expression, to 
block a wider spectrum of GH action including the endocrine, 
paracrine, and autocrine effects.

Conclusion
In this review, we have put forth the details of how GH pro-
motes cancer and why targeting GH action as a therapeutic op-
tion to accompany anticancer approaches may be significantly 
beneficial to improve prognoses. Having said that, it is vital to 
understand and consider the differences and overlaps in endo-
crine vs autocrine/paracrine GH actions in cancer, as that is a 
definite way that the clinical and epidemiological data appears 
to reconcile with the empirical data. At this point, we may con-
clude by acknowledging some clearly emerging questions 
about the scope of application of GHR antagonism in relevant 
cancer types: (i) Can GHR antagonism reduce cancer inci-
dence? (ii) Can GHR antagonism reduce cancer relapse? and 
most importantly: (iii) What is the tissue-specific and sex- 
specific status of nonpituitary GH with age? While scientific ef-
forts are to be directed toward answering these vital questions, 
there are early indications. Notably, it is now well-studied that 
GH promotes aging, and cancer is now understood to be large-
ly an age-associated disease. That is why decelerating the mo-
lecular mediators of aging also mechanistically lowers the risks 
of cancer incidence, as proven by collective literature in this 
area, including the example of patients with LS and congenital 
isolated GHD (31, 725). Therefore, one may ask whether low-
ering GH action at an advanced age might also lower the risks 
of cancer. Recent studies from our laboratory have already 
started to provide some intriguing answers to this enigmatic 
question. For example, given the observed enrichment of hall-
marks of healthy aging (reduced cancer incidence, improved 
insulin sensitivity, reduced musculoskeletal and cognitive de-
cline) in the congenital GHRKO mice (world’s longest-lived la-
boratory mouse (726)), we recently conditionally ablated 
GHR in the mice at an adult age of 6 months (6mGHRKO 
mice)—thus attenuating all endocrine, autocrine, and para-
crine actions of GH in these animals. Subsequent end-of-life 
pathology shows that this mid-life abrogation of GH action re-
sults in markedly lowering the rates of malignancy in both 
male and female mice, in addition to sex-specific improvement 
in insulin sensitivity and extended lifespan (617, 727). These 
findings suggest that GHR attenuation could serve as an effect-
ive maintenance therapy to attenuate high-risk cancer occur-
rence or recurrence. Finally, GHR antagonism exerts 
synergistic mechanisms of action in promoting the efficacy of 
several anticancer approaches including radiotherapy, chemo-
therapy, and targeted therapies such as immunotherapy. 
Simply put, in the context of cancer, blocking the GHR renders 
a triple whammy in anticancer effects: (i) antagonism of GH 
action in an endocrine manner as well as in an autocrine/para-
crine scenario; (ii) suppression of IGF1; and (iii) improving sys-
temic insulin sensitivity. This combination could be of great 
value in anticancer therapy. On the back of extensive preclin-
ical data and availability of approved and/or candidate antag-
onists of GH action discussed above, well-designed clinical 
trials in cancer patients are the call-of-the-hour to test whether 
GH action indeed has the potential to be an Achille’s heel of 
cancer.
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144. Štajduhar E, Sedic̀ M, Leniček T, et al. Expression of growth hor-
mone receptor, plakoglobin and NEDD9 protein in association 
with tumour progression and metastasis in human breast cancer. 
Tumour Biol. 2014;35(7):6425-6434.

145. Arumugam A, Subramani R, Nandy SB, et al. Silencing growth 
hormone receptor inhibits estrogen receptor negative breast can-
cer through ATP-binding cassette sub-family G member 2. Exp 
Mol Med. 2019;51(1):1-13.

146. Chiesa J, Ferrer C, Arnould C, et al. Autocrine proliferative effects of 
hGH are maintained in primary cultures of human mammary carcin-
oma cells. J Clin Endocrinol Metab. 2011;96(9):E1418-E1426.

147. van Garderen E, Schalken JA. Morphogenic and tumorigenic po-
tentials of the mammary growth hormone/growth hormone recep-
tor system. Mol Cell Endocrinol. 2002;197(1–2):153-165.

148. Selman PJ, Mol JA, Rutteman GR, van Garderen E, Rijnberk A. 
Progestin-induced growth hormone excess in the dog originates 
in the mammary gland. Endocrinology. 1994;134(1):287-292.

149. Timmermans-Sprang EPM, Gracanin A, Mol JA. Molecular sig-
naling of progesterone, growth hormone, Wnt, and HER in mam-
mary glands of dogs, rodents, and humans: new treatment target 
identification. Front Vet Sci. 2017;4:53.

150. Lantinga-van Leeuwen IS, van Garderen E, Rutteman GR, Mol 
JA. Cloning and cellular localization of the canine progesterone re-
ceptor: co-localization with growth hormone in the mammary 
gland. J Steroid Biochem Mol Biol. 2000;75(4–5):219-228.

151. Timmermans-Sprang EPM, Rao NAS, Mol JA. Transactivation of 
a growth hormone (GH) promoter-luciferase construct in canine 
mammary cells. Domest Anim Endocrinol. 2008;34(4):403-410.

152. Gregoraszczuk EL, Milewicz T, Kolodziejczyk J, et al. 
Progesterone-induced secretion of growth hormone, insulin-like 
growth factor I and prolactin by human breast cancer explants. 
Gynecol Endocrinol. 2001;15(4):251-258.

153. Milewicz T, Gregoraszczuk EL, Augustowska K, Krzysiek J, 
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