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Abstract: Brassicaceae plants are of great interest for human consumption due to their wide variety
and nutritional qualities. Of the more than 4000 species that make up this family, about a hundred
varieties of 6–8 genera are extensively cultivated. One of the most interesting aspects is its high content
of glucosinolates, which are plant secondary metabolites with widely demonstrated anti-oncogenic
properties that make them healthy. The most relevant Brassicaceae studies related to food and
melatonin are examined in this paper. The role of melatonin as a beneficial agent in seedling grown
mainly in cabbage and rapeseed and in the postharvest preservation of broccoli is especially analyzed.
The beneficial effect of melatonin treatments on the organoleptic properties of these commonly
consumed vegetables can be of great interest in the agri-food industry. Melatonin application extends
the shelf life of fresh-cut broccoli while maintaining optimal visual and nutritional parameters. In
addition, an integrated model indicating the role of melatonin on the organoleptic properties, the
biosynthesis of glucosinolates and the regulatory action of these health-relevant compounds with
anti-oncogenic activity is presented.
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1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) is an indolic bioamine derived from tryp-
tophan as a precursor in its biosynthesis. Since its discovery in 1958 in the pineal gland
of cow [1,2], its role as an animal hormone in vertebrates has been intensively studied.
Multiple studies have shown a relevant role of melatonin in various cellular and physiolog-
ical actions as a regulator of wake–sleep cycles, body temperature, mood, sexual behavior,
some endocrine rhythms and neuronal and immunological activity. The most recent studies
emphasize the important role of this molecule in glucose metabolism and insulin action.
Also noteworthy are the studies on melatonin’s anti-oncogenic role in many tumors as
a sensitizer in chemical and radiological therapies. Moreover, its therapeutic efficacy in
Parkinson’s and Alzheimer’s disease as well as in COVID-19 has also been studied [3–12].

In 1995, the view of melatonin as an hormonal molecule in mammals underwent a
sudden change. Melatonin was identified undoubtedly in several plants and then it was
considered as a universal biological molecule, since later it was also identified in inver-
tebrates, fungi and bacteria [13–17]. In plants, numerous studies in the last two decades
have been carried out to provide a significant body of research on the actions of melatonin
on the physiology of plants [18]. Currently, we can consider that melatonin, called phy-
tomelatonin in plants, performs multiple actions, modulating practically all the responses
of plants [18,19]. Thus, phytomelatonin intervenes and/or improves processes such as
germination, rooting, growth, flowering and fruiting [20–26]. The most obvious actions
of phytomelatonin are evident in situations of stress [27]. Phytomelatonin improves the
response and tolerance to both abiotic and biotic stressors. This function as a biostimu-
lant seems to be related to its multiple regulatory actions on the primary and secondary
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metabolism of plant cells, possibly through its action on the homeostasis of the redox
network and biological rhythms [28–35].

Phytomelatonin is considered a plant master regulator because it seems to regulate
the levels and actions of plant hormones. The levels of auxin, gibberellins, cytokinins, ABA,
ethylene and other phytohormones such as brassinosteroids, jasmonates and salicylates are
affected by the action of melatonin through up- or downregulation of transcripts of some
biosynthesis/catabolism enzymes, and also hormone-related regulatory factors; some inter-
esting reviews about this can be consulted [26,32,36,37]. Photosynthesis, photorespiration
and stomatal regulation, which are key pieces of the water and carbon economy in plants,
are strongly regulated by phytomelatonin. Moreover, the metabolic pathways of carbo-
hydrates, lipids and nitrogen and sulfur compounds are modulated by phytomelatonin,
including the osmoregulatory response in stressful situations [38,39].

In this review, the most relevant works with Brassicaceae related to food and melatonin
are analyzed. The role of melatonin as a beneficial agent in the postharvest preservation
of broccoli is especially studied. Its beneficial effect on organoleptic aspects of this widely
consumed vegetable is of great interest in the agri-food industry. In addition, an integrated
model is presented showing in detail the role of melatonin on the biosynthesis of glucosi-
nolates, its regulatory action on these compounds with anti-oncogenic activity and its high
importance in our diets.

2. Brassicaceae Plants and Melatonin Studies

The family Brassicaceae, also known as Cruciferae, includes approximately 372 genera
and 4060 species. It is distributed throughout the world, and its distribution pattern sug-
gests that this plant family originated and was diversified from the eastern Mediterranean.
Brassicaceae is a large family of plants that have a wide range of applications, including
human consumption in vegetables, seed oils and condiments, livestock in fodder and
others. Arabidopsis thaliana, which is well known in the research, belongs to this family.
Among the vegetables that stand out for their high consumption are broccolis, cauliflowers,
cabbages, collard greens, turnips and radishes; all of these derive from cultivars of Brassica
rapa L. and Brassica oleracea L., which present a multitude of varieties and/or subspecies
that provide an enormous culinary richness in the different regions where they are grown.
Brassica napus L. var oleracea is cultivated worldwide for rapeseed oil. The three types of
mustard: yellow (Sinapsis alba L.), black (Brassica nigra L.) and brown or Indian (Brassica
juncea L.) are also widely cultivated and appreciated in gastronomy [40,41].

Table 1 shows the species of the Brassicaceae family that have been studied in mela-
tonin treatments with food interest. In this case, only studies in seeds, seedlings and plants
are shown in Table 1. Studies of A. thaliana and melatonin are not included in this review
as we focus on Brassicacea of interest as foods.

Multiple studies of melatonin with A. thaliana can be consulted. In general, melatonin
has a vegetative-growth-promoting effect, activating the biosynthesis of plant hormones,
and balancing redox homeostasis, especially in situations of abiotic stress. A clear effect of
Brassicaceae is the activation of anthocyanin biosynthesis, together with a foliar senescence-
retarding effect. Therefore, melatonin treatments in plants, either foliar or root, result in
plants of larger size, biomass and color and those with greater tolerance to stress—all very
interesting aspects to be applied in the crops of the different Brassicaceae (see Table 1).
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Table 1. Brassicaceae plants used in melatonin studies.

Plant Species/Common Name Melatonin Treatment Response/Effect References
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B. juncea L. 

Indian mustard seedlings 
0.01–0.5 µM ↑ IAA, root growth [42] 

 B. juncea var. gemmifera 
Baby lateral buds 

100 µM ↑ total phenols and glucosinolates, vit. C, 
carotenoids, ↓ weight loss, Chl loss 

[43] 

 

B. napus var. oleracea 
Rapeseed seedlings 50 µM 

↑ growth, salt stress tolerance, IAA, ABA, 
BR and JA signaling factors, JA and BR lev-

els 
[44] 

  0.01–100 µM ↑ salt tolerance, growth, redox balance [45] 

  500 µM ↑ drought tolerance, germination, Chl level, 
stoma size, redox balance [46] 

 

Raphanus sativus var. radculus 
Cherry radish seedlings 50–290 µM 

↑ IAA, growth, heat stress tolerance, bio-
mass, Chl levels, protein content, solid solu-

ble content, redox balance 
[47] 

 
B. oleracea var. rubrum 
Red cabbage seedlings 

1–100 µM ↑ germination, growth, Cu tolerance [48] 

 
B. oleracea var. album and rubrum 

White and red cabbage seedlings 0.1–1 mM ↑ growth, anthocyanins, redox balance [49] 

 

B. rapa var. parachinensis 
Chinese flowering cabbage (Choy 

Sum) seedlings 
100 µM 

↑ shelf life, energy level, ↓ ABA level, senes-
cence factors, ABA biosynthesis genes, 

ABA-transcription factors, Chl-degrading 
genes, ROS, MDA, RBOH 

[50–52] 

 
B. rapa var. pekinensis 

Chinese cabbage 50–100 µM ↑ sclerotinia rot tolerance, thiamine, ATP, 
glucosinolates, antioxidant enzymes [53] 

 
B. oleracea var. italica 
Broccoli seedlings 60 ppm 

↑ growth, photosynthesis, biomass, Chl and 
carotenoid levels [54] 

  10 µM 
↑ growth, Zn tolerance, glucosinolate bio-

synthesis genes, myrosinase, isothiocyanate, 
sulforaphane, ↓ EC, MDA 

[55] 

 
Lepidum sativum L. 

Gardencress seedlings 5–100 µM 
↑ growth, Chl, carotenoid, anthocyanin and 

phenol levels [56] 

     

 
Mustard seeds - To obtain phytomelatonin [57] 

↑: Increased content or increased action; ↓: Decreased content or decreased action. 

3. Postharvest Application of Melatonin in Brassicaceae 
One of the most interesting aspects in studies on melatonin is its ability as a biomod-

ulator of ripening and senescence. Many studies in this regard have been carried out, ob-
taining interesting results in the postharvest treatments of fruits such as apple, pear, to-
mato, cucumber, grape, plum, peach, apricot, cherry, strawberry, pomegranate, banana, 
etc., and in flowers such as carnation, anthurium, devil’s trumpet and peony. Some recent 
reviews on this topic, in which multiple data are analyzed and a scheme of action of mel-
atonin on postharvest conservation is proposed, can be consulted [25,39,58–60]. 

At Brassicaceae, there are postharvest studies of melatonin application only on broc-
coli florets/heads (Table 2). 

B. juncea L.
Indian mustard seedlings 0.01–0.5 µM ↑ IAA, root growth [42]

B. juncea var. gemmifera
Baby lateral buds 100 µM ↑ total phenols and glucosinolates, vit.

C, carotenoids, ↓ weight loss, Chl loss [43]
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White and red cabbage seedlings 0.1–1 mM ↑ growth, anthocyanins, redox balance [49]

Molecules 2022, 27, x FOR PEER REVIEW 3 of 11 
 

 

Table 1. Brassicaceae plants used in melatonin studies. 

 Plant Species/Common Name Melatonin 
Treatment 

Response/Effect Reference 

 
B. juncea L. 

Indian mustard seedlings 
0.01–0.5 µM ↑ IAA, root growth [42] 

 B. juncea var. gemmifera 
Baby lateral buds 

100 µM ↑ total phenols and glucosinolates, vit. C, 
carotenoids, ↓ weight loss, Chl loss 

[43] 

 

B. napus var. oleracea 
Rapeseed seedlings 50 µM 

↑ growth, salt stress tolerance, IAA, ABA, 
BR and JA signaling factors, JA and BR lev-

els 
[44] 

  0.01–100 µM ↑ salt tolerance, growth, redox balance [45] 

  500 µM ↑ drought tolerance, germination, Chl level, 
stoma size, redox balance [46] 

 

Raphanus sativus var. radculus 
Cherry radish seedlings 50–290 µM 

↑ IAA, growth, heat stress tolerance, bio-
mass, Chl levels, protein content, solid solu-

ble content, redox balance 
[47] 

 
B. oleracea var. rubrum 
Red cabbage seedlings 

1–100 µM ↑ germination, growth, Cu tolerance [48] 

 
B. oleracea var. album and rubrum 

White and red cabbage seedlings 0.1–1 mM ↑ growth, anthocyanins, redox balance [49] 

 

B. rapa var. parachinensis 
Chinese flowering cabbage (Choy 

Sum) seedlings 
100 µM 

↑ shelf life, energy level, ↓ ABA level, senes-
cence factors, ABA biosynthesis genes, 

ABA-transcription factors, Chl-degrading 
genes, ROS, MDA, RBOH 

[50–52] 

 
B. rapa var. pekinensis 

Chinese cabbage 50–100 µM ↑ sclerotinia rot tolerance, thiamine, ATP, 
glucosinolates, antioxidant enzymes [53] 

 
B. oleracea var. italica 
Broccoli seedlings 60 ppm 

↑ growth, photosynthesis, biomass, Chl and 
carotenoid levels [54] 

  10 µM 
↑ growth, Zn tolerance, glucosinolate bio-

synthesis genes, myrosinase, isothiocyanate, 
sulforaphane, ↓ EC, MDA 

[55] 

 
Lepidum sativum L. 

Gardencress seedlings 5–100 µM 
↑ growth, Chl, carotenoid, anthocyanin and 

phenol levels [56] 

     

 
Mustard seeds - To obtain phytomelatonin [57] 

↑: Increased content or increased action; ↓: Decreased content or decreased action. 

3. Postharvest Application of Melatonin in Brassicaceae 
One of the most interesting aspects in studies on melatonin is its ability as a biomod-

ulator of ripening and senescence. Many studies in this regard have been carried out, ob-
taining interesting results in the postharvest treatments of fruits such as apple, pear, to-
mato, cucumber, grape, plum, peach, apricot, cherry, strawberry, pomegranate, banana, 
etc., and in flowers such as carnation, anthurium, devil’s trumpet and peony. Some recent 
reviews on this topic, in which multiple data are analyzed and a scheme of action of mel-
atonin on postharvest conservation is proposed, can be consulted [25,39,58–60]. 

At Brassicaceae, there are postharvest studies of melatonin application only on broc-
coli florets/heads (Table 2). 

B. rapa var. parachinensis
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3. Postharvest Application of Melatonin in Brassicaceae

One of the most interesting aspects in studies on melatonin is its ability as a biomod-
ulator of ripening and senescence. Many studies in this regard have been carried out,
obtaining interesting results in the postharvest treatments of fruits such as apple, pear,
tomato, cucumber, grape, plum, peach, apricot, cherry, strawberry, pomegranate, banana,
etc., and in flowers such as carnation, anthurium, devil’s trumpet and peony. Some re-
cent reviews on this topic, in which multiple data are analyzed and a scheme of action of
melatonin on postharvest conservation is proposed, can be consulted [25,39,58–60].
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At Brassicaceae, there are postharvest studies of melatonin application only on broccoli
florets/heads (Table 2).

Table 2. Studies on melatonin application in broccoli (B. oleracea var. italica) heads/florets.

Plant Material/Ta Melatonin Treatment Response/Effect Ref.

Intact florets, 20 ◦C 100 µM
immersed

↑ shelf life, Chls, ATP, ADP, SOD, CAT, POD
↓ yellow index, senescence, respiration rate, TCA, AMP, ROS [61]

Intact florets, 20 ◦C 100 µM
sprayed

↑ shelf life, Chls, flavonoids, carotenoids
↓ yellow index, senescence, bitterness, astringency,

sulfur-volatiles, sulforaphane
[62]

Intact florets, 20 ◦C 1, 50, 500 µM
immersed (5 min)

↑ shelf life, visual quality, Chls, carotenoids, vit. C, phenols, TAA,
total glucosinolates, glucoraphanin, glucosinolate biosynthesis genes [63]

Small cut florets, 4 ◦C 10, 100, 500 µM
immersed (10 min)

↑ shelf life, Hue angle, Chls, FW, vit. C, TAA, phenols, flavonoids (rutin,
quercetin, epicatechin), SOD, CAT

↓ yellow index, senescence, POD, MDA, ROS
[64]

Small cut florets, 4 ◦C 100 µM
immersed (10 min)

↑ total glucosinolates, sulforaphane and glucoraphanin content,
glucosinolate biosynthesis genes, myrosinase

[65]

Intact florets, 20 ◦C 100 µM
immersed (30 min)

↑ shelf life, Chls, chloroplast integrity
↓ yellow index, Chl-degrading enzymes and genes [66]

↑: Increased content or increased action; ↓: Decreased content or decreased action.

Melatonin treatment in broccoli florets shows interesting results for the postharvest
conservation of this vegetable frequently consumed worldwide (Table 2). Visual and qual-
ity characteristics are clearly improved by treatments around 100 µM melatonin. Short
treatments by immersion or spray induce a lower loss of chlorophylls and carotenoids, and
therefore, an improvement in the chromatic spectrum of broccoli florets, as can be seen by a
greater degree of hue angle (greener, bluer, less yellow). This anti-senescence effect was first
described in 2009 by the authors in barley leaves [23], and has subsequently been verified in
a multitude of plant species, both edible and wildtype, where an inhibitory effect of mela-
tonin on activating senescence transcription factors was demonstrated [18,27,32,39,67,68].
In addition, broccoli florets preserve freshness better, with less hydric and texture loss. In
general, the maintenance and cold transport of broccoli florets is essential for an acceptable
shelf life. Temperatures around 4 ◦C are ideal for reaching a maximum duration of about
20–22 days. Melatonin treatments clearly enhance visual and quality characteristics, im-
proving color, texture and shine, and are able to extend its shelf life between 5–8 days with
maximum quality. Other parameters such as soluble solids, total acid content, astringency,
bitterness and vitamin C content are improved with melatonin treatments (Table 2).

Regarding the compounds of nutraceutical interest in broccoli florets, melatonin treat-
ments increase the contents of total phenols and flavonoids, and some specific ones such as
rutin and quercetin (Table 2). Melatonin induces the expression of diverse transcripts of
phenolic metabolism. In white and red cabbage seedlings, melatonin upregulates phenolic-
related genes such as PAL, C4H, CHS, CHI, F3H, DFR and UFGT, among others [7].
Moreover, in fruits such as berries and kiwifruit, melatonin induces several flavonoid
biosynthesis genes [28,29]. Melatonin has also been found to cause a general activation of
the primary and secondary metabolism that leads to high levels of carbohydrates, lipids
and amino acids, and a better energy level and redox status [38,39].

A characteristic of Brassicaceae, though not exclusive to it, is its relevant level in
glucosinolates, which are a group of secondary metabolites. Evolutionarily, glucosinolates
originated twice, so that they are found in two unrelated lines of plants: in the Brassicales
order (mainly Brassicaceae, Capparaceae and Caricaceae families) and in the Putranjivaceae
family [69]. These compounds contain N- and/or S- in their chemical structure, formulated
as β-thioglucoside-N-hydroxysulfates. More than 120 glucosinolate compounds have been
identified, and they can be classified as aliphatic glucosinolates (originating from methion-
ine, valine, leucine or isoleucine), indole glucosinolates (originating from tryptophan) and
aromatic glucosinolates (from phenylalanine or tyrosine) [70]. These secondary metabolites
are relevant in the defense system of plants due their fungicide, bactericide, nematicide and
allelopathic properties [71]. Moreover, Brassicaceae’s powerful odor and taste (“mustard oil
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bomb”) seems to repel herbivores, defending the plant from excessive consumption [72].
Likewise, the potent cancer chemoprotective and/or anti-oncogenic activity of glucosino-
lates and isothiocyanates (their hydrolysis products) has been described, promoting the
cultivation and human consumption of glucosinolate-containing plant species as healthy
foods [70,73,74].

In an experiment on broccoli florets without cooling, the contents of total aliphatic and
indolic glucosinolates declined by more than 50% after 3 days of storage. However, the
decrease was alleviated by melatonin treatment [63]. In broccoli florets stored at 20 ◦C [63]
and also at 4 ◦C [65], melatonin induced total glucosinolate content, including the biosyn-
thesis of several aliphatic glucosinolates such as GER and GRA, and decreased others
such as GNA and PRO; moreover, indolic glucosinolates such as GBS, NGBS and 4MGBS
were increased. Sulforaphane (SFR), an isothiocyanate product, was additionally increased
(Figure 1). Melatonin upregulated the expression of several genes related to glucosinolate
biosynthesis such as the transcription factors MYB28 and MYB34, and several transcripts of
glucosinolate biosynthesis enzymes such as GS-Elong, UGT74B1, ST5b, FMOGS-OX1 and
TGG1, and CYP83A1, CYP79F1 and CYP79B2, but AOP2 and ESP were downregulated by
melatonin. The upregulation by melatonin of MYO/TGGs induced glucosinolate hydroly-
sis, reflecting the accumulated levels of sulforaphane in stored broccoli (Figure 1) [63,65]. In
addition, in Chinese cabbage, a similar glucosinolate biosynthesis activation by melatonin
was observed. In this case, an interesting study on the fungicide activity of glucosinolate-
rich extracts against Sclerotinia sclerotiorum (stem rot disease) and its relationship with the
melatonin-inducing capacity of glucosinolate biosynthesis was demonstrated [53]. An
overall view is provided in the proposed model of Figure 1, but although we know that
during the storage of broccoli glucosinolates are synthesized [75], and that melatonin is
able to over-activate the biosynthesis of these compounds, it is important to point out that
the conditions of temperature and light/dark determine the balance between glucosinolate
biosynthesis and hydrolysis up to isothiocyanates, which considerably alter the flavors of
the product by the time it reaches the consumer.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 1. Representative model of melatonin’s effects on broccoli florets postharvest. Red arrows 
mean up-/downregulation, and yellow +/− means higher/lower levels with respect to untreated 
broccoli heads. 

4. Conclusions 
Although there are not many works on Brassicaceae plants, the existing ones confirm 

the bio-stimulating role of melatonin in plants under stress conditions [27,29,76]. Moreo-
ver, melatonin is also an activator of germination in old seeds or seeds exposed to con-
taminants (Table 1). The interconnection between plant primary and secondary metabo-
lisms that melatonin establishes has been revealed in some studies [39]. In Brassicaceae 
such as A. thaliana, Chinese cabbage seedlings and broccoli florets, the promoting role in 
glucosinolate biosynthesis has been demonstrated. Melatonin treatments induce the accu-
mulation of total aliphatic and indole glucosinolates, increasing specific glucosinolates, 
including GER, GRA, GBS and NGBS, among others (Figure 1). This glucosinolate biosyn-
thesis induction by melatonin is possibly the result of an activation of the metabolism of 
S and N in these plants, but it is also due to the upregulation of specific transcription 
factors and enzymes to the glucosinolate pathway. The increased biosynthesis of glucos-
inolates also results in a higher content in their hydrolysis products—isothiocyanates. In 
addition to the interest in these compounds as anti-oncogenic agents, the use of melatonin 
is presented as a very important tool in fresh-cut broccoli, since various studies have 
shown that the application of melatonin in broccoli florets extends their shelf life and im-
proves the postharvest quality of fresh-cut broccoli, which thereby maintain their green 
color and texture longer than untreated material, and also maintain higher levels of glu-
cosinolates (Table 2, Figure 1). 

Nevertheless, further investigations are needed: (i) to know better the effects of mel-
atonin on primary metabolism, specifically on the photosynthetic, respiratory and carbo-
hydrate transformation pathways (simple sugars, sucrose and starch, mainly); (ii) to form 
a better understanding of the regulatory mechanism of melatonin on glucosinolate me-
tabolism (the aliphatic/indolic glucosinolate ratio and hydrolysis products); (iii) to know 
the possible effect of melatonin on mineral, dietary fiber and vitamin composition in 
plants and cabbages; (iv) postharvest, to better understand the effect of melatonin on the 
metabolism of ethylene and other plant hormones in broccoli; and (v) to study the effect 
of melatonin in other postharvest products of the Brassicaceae family such as cauliflower, 
Romanesco, kohlrabi, red cabbage and leafy vegetables. 

Figure 1. Representative model of melatonin’s effects on broccoli florets postharvest. Red arrows
mean up-/downregulation, and yellow +/−means higher/lower levels with respect to untreated
broccoli heads.



Molecules 2022, 27, 1523 6 of 10

4. Conclusions

Although there are not many works on Brassicaceae plants, the existing ones confirm
the bio-stimulating role of melatonin in plants under stress conditions [27,29,76]. Moreover,
melatonin is also an activator of germination in old seeds or seeds exposed to contaminants
(Table 1). The interconnection between plant primary and secondary metabolisms that
melatonin establishes has been revealed in some studies [39]. In Brassicaceae such as A.
thaliana, Chinese cabbage seedlings and broccoli florets, the promoting role in glucosinolate
biosynthesis has been demonstrated. Melatonin treatments induce the accumulation of
total aliphatic and indole glucosinolates, increasing specific glucosinolates, including GER,
GRA, GBS and NGBS, among others (Figure 1). This glucosinolate biosynthesis induction
by melatonin is possibly the result of an activation of the metabolism of S and N in these
plants, but it is also due to the upregulation of specific transcription factors and enzymes to
the glucosinolate pathway. The increased biosynthesis of glucosinolates also results in a
higher content in their hydrolysis products—isothiocyanates. In addition to the interest
in these compounds as anti-oncogenic agents, the use of melatonin is presented as a very
important tool in fresh-cut broccoli, since various studies have shown that the application
of melatonin in broccoli florets extends their shelf life and improves the postharvest quality
of fresh-cut broccoli, which thereby maintain their green color and texture longer than
untreated material, and also maintain higher levels of glucosinolates (Table 2, Figure 1).

Nevertheless, further investigations are needed: (i) to know better the effects of
melatonin on primary metabolism, specifically on the photosynthetic, respiratory and
carbohydrate transformation pathways (simple sugars, sucrose and starch, mainly); (ii) to
form a better understanding of the regulatory mechanism of melatonin on glucosinolate
metabolism (the aliphatic/indolic glucosinolate ratio and hydrolysis products); (iii) to
know the possible effect of melatonin on mineral, dietary fiber and vitamin composition in
plants and cabbages; (iv) postharvest, to better understand the effect of melatonin on the
metabolism of ethylene and other plant hormones in broccoli; and (v) to study the effect
of melatonin in other postharvest products of the Brassicaceae family such as cauliflower,
Romanesco, kohlrabi, red cabbage and leafy vegetables.
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Abbreviations

4HGBS 4-hydroxyglucobrassicin
4MGBS 4-methoxyglucobrassicin
ABA abscisic acid
AOP2 2-oxoglutarate-dependent dioxygenase
BR brassinosteroids
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C4H cinnamic acid 4-hydroxylase
CAT catalase
CHI chalcone isomerase
Chl chlorophylls
CHS chalcone synthase
CYP79B1,2 cytochome P450
CYP79F1 dihomomethionine N-hydroxylase
CYP83A1 cytochome P450
DFR dihydroflavonol 4-reductase
EC electroconductivity
ESP epithiospecifier protein
F3H: flavanone 3-hydroxylase
FMOGS-OX1 flavin monooxygenase
FW fresh weight
GBS glucobrassicin
GER glucoerucin
GNA gluconapin
GRA glucoraphanin
GS-Elong glucosinolate biosynthesis enzyme
IAA indolyl-3-acetic acid (auxin)
ITC isothiocyanates
JA jasmonic acid
MDA malondialdehyde
MYB28/34 regulator of glucosinolate biosynthesis
MYO myrosinase
NGBS neoglucobrassicin
PAL phenylalanine ammonia-lyase
POD peroxidase
PRO progoitrin
RBOH respiratory burst oxidase
ROS reactive oxygen species
SFR sulforaphane
SIN sinigrin
SOD superoxide dismutase
ST5b sulfotransferase
TAA total antioxidant activity
TCA tricarboxylic acid cycle (Krebs cycle)
TGG1 myrosinase
UFGT, UDP-glucose flavonoid 3-O-glucosyltransferase
UGT74B1 UDP-glycosyltransferase
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