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Prolactin as an autocrine/paracrine

growth factor in human cancer

Nira Ben-Jonathan, Karen Liby, Molly McFarland and Michael Zinger

Carcinogenesis results from a progressive loss of
cellular control mechanisms and is affected by genetic,
environmental, dietary and hormonal factors. Although
hormones do not function as bona fide carcinogens, they
can promote growth of transformed cells by interacting
with growth factors and oncogenes. The role of gonadal
steroids in cancers of reproductive tissues is well
established, whereas the contribution of prolactin
(PRL), an accessory reproductive hormone, is
controversial. In addition to its function as a circulating
hormone of pituitary origin, PRLshares many
properties with cytokines. These include multiple sites
of synthesis, ubiquitous receptor distribution,
homologous receptor structure and similar signal
transduction pathways. Here, we outline salient
features of PRLas a cytokine/growth factor and present
emerging evidence for its involvement in the growth of
several reproductive and non-reproductive tumors.

Features of PRL as a cytokine/growth factor

PRL is a 23-kDa protein comprising 199 amino acids
in four antiparallel α helices with three disulfide
loops. The location of the loops is conserved but the
primary sequence varies among species. Post-
translational modifications, such as glycosylation,
phosphorylation, cleavage and polymerization,
generate molecular heterogeneity [1]. Human PRL
(hPRL) is N-glycosylated on Asp31, with both
glycosylated and non-glycosylated forms circulating
at variable ratios. Glycosylated PRL has a lower
binding affinity to the PRL receptor and a reduced
activity in some bioassays, whereas phosphorylated
PRL binds well to the receptor but might act as an
antagonist [2]. A cleaved form of PRL (16K PRL) has
antiangiogenic properties [3]. Polymerization and
conjugation to IgG can form large molecular 
species; ‘big’PRL (50–60 kDa) and macro-PRL
(150–170 kDa) are present in serum of patients 
with hyperprolactinemia. hPRL, but not PRL or
growth hormone (GH) from other species, binds to
heparin [4]. Binding of growth factors to the
extracellular matrix (ECM) provides protection from
inactivation and facilitates receptor binding.

Hormones are produced by defined endocrine
glands, whereas growth factors are made by many cell
types. Indeed, PRL is synthesized in multiple
extrapituitary sites, including the decidua,
myometrium, breast, prostate, brain and immune
cells [5]. Uptake and retention from the circulation is
another distinct feature of PRL. Uptake can be used
for transporting PRL into fluid compartments such as
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cerebrospinal fluid and milk [6], whereas PRL
retention by the ECM can increase its concentration
in the vicinity of responsive cells. PRL is also
internalized within target cells [7], although the exact
function(s) of intracellular PRL or the potential for its
recycling and exocytosis are unclear.

The PRL receptor and its signaling pathways

The PRL receptor comprises a single transmembrane
region that divides the receptor into an extracellular
ligand-binding domain and an intracellular 
domain [8]. The extracellular domain has two
disulfide bonds and a Trp-Ser-X-Trp-Ser motif. The
cytoplasmic domain has a proline-rich motif (‘box 1’)
that couples to protein kinase signaling molecules. An
intermediate receptor isoform with a deleted
intracellular segment [9] in addition to two
alternatively spliced short isoforms [10] have been
identified in human tissues and cancers. A soluble
isoform, containing only the extracellular domain, is
present in human serum and milk. It serves as a
PRL-binding protein, and could either provide a
stable pool of PRL that extends its biological activity
or render it less accessible for receptor binding [11].

PRL binding induces sequential receptor
dimerization. Two sites on PRL (site 1 made of
helices 1 and 4, and site 2 made of helices 1 and 3) are
involved in receptor homo-dimerization and the
formation of an active trimeric complex [8]. Similar to
many cytokines that induce receptor dimerization,
PRL exhibits an inverse U-shaped curve rather than
a linear dose–response relationship [12]. Hence, at
very high doses, PRL can be less effective than at
physiological concentrations. Another complication is
activation of the PRL receptor by placental lactogens
and human GH (hGH). The presence of lactogenic
hormones in serum additives (e.g. fetal bovine serum)

often obscures the mitogenic effects of exogenous 
PRL [13]. In addition, the hPRL receptor has a lower
binding affinity to PRL from other species than to the
homologous hormone.

The PRL receptor is devoid of intrinsic tyrosine
kinase activity, utilizing instead the Jak–Stat
pathway as its main signaling cascade. Jak2 (Janus
kinase 2), a protein tyrosine kinase, which is
constitutively associated with ‘box 1’, is rapidly
phosphorylated upon receptor dimerization and
induces phosphorylation of the receptor and Stat
(signal transducers and activators of transcription)
proteins. Among the Stat proteins, Stats 1, 3 and 5 are
activated by PRL, with Stats 5a and 5b serving as the
primary mediators [8]. Activated Stats dimerize,
translocate into the nucleus, and bind to specific
sequences on target genes. The ras/raf/mitogen-
activated protein kinase cascade and fyn, a member of
the Src kinase family, are also activated by PRL but
appear to be of lesser importance than the Jak–Stat
pathway for transducing the effects of PRL.

Dissimilar regulation of pituitary and extrapituitary PRL

Extrapituitary PRL protein is identical to pituitary
PRL. In spite of the similarity of the mature proteins,
PRL is differentially regulated in pituitary and
extrapituitary sites [5]. As shown in Fig. 1, pituitary
PRL is controlled by a proximal promoter, which
requires the Pit-1 transcription factor for
trans-activation. The promoter is divided into a
proximal region and a distal enhancer, both of which
are necessary for optimal pituitary-specific expression.
The pituitary-type promoter and its regulation by
dopamine, estrogens, neuropeptides and some growth
factors have been well characterized [14].

The synthesis of extrapituitary PRL is driven by a
superdistal promoter, located 5.8 kb upstream of the
pituitary start site (Fig. 1). This promoter is silenced
in the pituitary, does not bind Pit-1 and is not affected
by dopamine or estrogens [15]. Exon 1a, serving as
the alternative transcriptional start site, is spliced
into exon 1b, yielding an identical coding region 
to the pituitary transcript, except for a longer
5′-untranslated region. The superdistal promoter
contains binding sites for several transcription factors
but its regulation is poorly understood [16]. The
dissimilar control of PRL among the various tissues is
exemplified by progesterone, which increases
PRL synthesis in the endometrium, decreases it in
the myometrium, and has no effect on pituitary PRL
(Table 1). Extrapituitary PRL is not stored in
secretory granules and is not subjected to
Ca2+-dependent exocytosis, underscoring another
point of divergence from pituitary PRL.

Mitogenic/antiapoptotic actions of PRL

Tumors result from cellular transformation leading to
an inappropriate increase in cell number. As is
becoming increasingly clear, cell-cycle progression
and apoptosis are intertwined. Impaired apoptosis
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augments tumor progression, because apoptosis
eliminates cells with increased malignant potential.
PRL can act as a survival (antiapoptotic) factor or as a
mitogen. Indeed, PRL prolongs the lifespan of the
lobuloalveoli in the lactating mammary gland, which
undergo apoptosis upon cessation of suckling and
PRL withdrawal [17]. PRL increases the expression of
the antiapoptotic protein Bcl-2 in Nb2 cells [18], whilst
acting as a mitogen in glia [19] and breast cancer 
cells [13]. The gene promoters of both cyclin D1 (which

regulates cell-cycle progression) and the antiapoptotic
factor Bcl-x are targeted by Stat 5 proteins [20]. There
are also interactions between PRL and oncogenic
factors, such as Her-2 [21] and BRCA1 [22].

Breast cancer

PRL affects cellular growth and differentiation in the
breast and is obligatory for milk production. Because
the breast is the main target of PRL, it follows that
PRL is also involved in its aberrant growth. This is well
established in rodents, where hyperprolactinemia
correlates with increased mammary tumorigenesis.
PRL administration increases the incidence, size and
number of spontaneous and virus-induced mammary
tumors, and sustains carcinogen-induced tumor
growth [23]. Moreover, transgenic mice
overexpressing the gene encoding PRL develop
mammary tumors [24]. Yet, an association between
the circulating levels of PRL and breast cancer in
humans is unclear. Although there is some correlation
between increased serum PRL levels and risk of
breast cancer in postmenopausal women [25],
treatment of patients with bromocriptine and
somatostatin (to suppress both PRL and GH) does not
reduce morbidity or mortality [26].

A renewed interest in PRL and growth
dysregulation in the breast came with the recognition
that 80–90% of breast carcinomas express the PRL
receptor, with a higher expression in neoplastic than
adjacent tissue [27]. There is increasing evidence that
breast PRL acts as a local growth factor. PRL and
PRL receptor expression have been detected in
normal and malignant breast tissues and in many
breast-derived cell lines (Table 2) [13,28,29]. 
The PRL transcript in the breast originates from the
superdistal promoter; that is, it contains exon 1a [30].
This suggests that breast PRL is regulated differently
from pituitary PRL, providing a plausible explanation
for the failure of dopamine agonists to suppress
breast PRL and affect PRL-dependent tumors in
patients. Notably, breast carcinomas overexpressing
the oncogene HER2 (official symbol ERBB2) have
higher proliferative and metastatic indices if they
also produce autocrine PRL [21].

The mitogenic activity of locally produced PRL has
been supported by the suppression of T47D breast
cancer cell proliferation by PRL antisense
oligonucleotides [13], anti-PRL antibodies [31], or
PRL antagonists [27,32]. Increased proliferation of
breast cancer cells by exogenous PRL becomes
apparent only when lactogenic hormones are removed
from the culture media [13]. Tumors derived from
T47D breast cancer cells inoculated into nude mice
grow larger upon treatment with hPRL, whereas
treatment with a PRL antagonist inhibits tumor
growth [33]. The complexity of PRL action is
underscored by a recent report on upregulation of the
BRCA1 susceptibility gene in breast cancer cells by
PRL [22]. Because BRCA1 is a tumor suppressor, its
induction by PRL might antagonize the mitogenic
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Table 1. Differential regulation of PRL synthesis and release in the pituitary

and uterus
a,b

Substance Pituitary
c

Endometrium
d

Refs Myometrium
e

Refs

Peptides/neurotransmitters

Endothelin 1 ↓↓ ↓↓ [48] nd
TRH ↑↑↑ = [48] = [56]
VIP ↑↑ nd = [54]
Dopamine ↓↓↓ = [48] nd

Steroids

Estrogen ↑↑ = [50,53] ↑ [50,53]
Progesterone = ↑↑↑ [50,53] ↓↓ [50,53]
Growth/hematopoietic factors

EGF ↑ nd ↓ [54]
IGF-I ↑↑ ↑↑ [48] = [56]
IL-1 ↓ ↓↓ [48] nd
IL-4 nd nd ↓↓ [54]
TNF-α nd ↓↓ [48] nd

Protein hormones

hCG nd nd ↑↑ [55]
Insulin ↑ ↑↑ [48] ↑ [56]
Lipocortin 1 nd ↓↓↓ [48] nd
Relaxin ↑ ↑↑ [50] nd

aAbbreviations: EGF, epidermal growth factor; hCG, human chorionic gonadotropin; IGF-I,
insulin-like growth factor I; IL, interleukin; nd, not determined; PRL, prolactin; TNF-α,
transforming growth factor-α; TRH, thyrotropin-releasing hormone; VIP, vasoactive intestinal
peptide. bChanges: ↑ , stimulation; ↓ , inhibition; =, no change. cData obtained from rat pituitary
cells, reviewed in [14]. dIncludes either endometrial or decidual explants/cells. eIncludes either
normal myometrium or leiomyomas.

Table 2. Expression of PRL and the PRL receptor in human breast and

prostate cell lines
a

Cell type PRL PRL receptor

mRNA Refs Protein Refs mRNA Refs Protein Refs

Breast

BT-20 − [13] nd + [13] + [12]
Hs578t + [13] nd + [12,29,70] nd
MCF-7 + [2,13,30] nd + [12,29,70] + [12,70,71]
MCF-10 + [13,30] nd + [13] nd
MDA-MB- + [30] nd − [29,70]
  231
MDA-MB- + [13] nd + [13,29] nd
  468
SK-BR3 + [13] nd + [13] + [12]
T47D + [13,30] + [12] + [13] + [12,29,71]
ZR75-1 + [13] nd + [13,70] + [70]

Prostate

DU145 + [2] + [2] nd + [44]
LNCap + [2] nd + [29,43] nd
PC-3 + [2] nd + [29,43] nd

aAbbreviations: nd, not determined; PRL, prolactin;  −, not detectable; +, detectable.



effects of PRL. PRL also causes a rapid, dose-
dependent phosphorylation of both FAK and 
paxillin [34], suggesting activation of pathways
involved in cellular adhesion. Induction of breast
cancer cell motility by PRL provides further support
for its potential role in metastasis [35].

Prostatic hyperplasia and neoplasia

Prostate cancer and breast cancer have similar
lifetime risks, mortality rates and dependence on
hormones. Although the effects of androgens on
prostate growth and tumorigenesis are undisputed,
PRL is one of several cytokines with tropic effects on
the prostate. In rodents, PRL participates in prostate
organogenesis, secretory activity and hyperplasia [36].
PRL increases prostate weight and nuclear androgen
receptor content and promotes development of
dysplasia and adenocarcinoma of the dorsolateral
lobes of the rat prostate, a region analogous to the
human prostate [37]. Mice overexpressing PRL have
a massive increase in prostatic weight [38], whereas
targeted disruption of the gene encoding PRL [39]
causes a reduction in prostate size. Both PRL receptor
expression [40] and PRL production [41] by rat
prostatic epithelium have been reported. 
Prostate PRL is stored in secretory granules and its
synthesis is androgen dependent. Incubation of
androgen-deprived rat prostate explants with PRL
inhibits apoptosis, establishing PRL as a survival
factor for epithelial cells of the dorsal and lateral, but
not the ventral, lobes [41].

There is little correlation between
hyperprolactinemia and increased risk of prostate
cancer in men [42]. However, emerging evidence
suggests that prostate-produced PRL acts locally. 
The PRL receptor is expressed in fetal, prepubertal
and adult human prostate epithelial cells [43]. It is
also detected in benign prostatic hyperplasia and its
expression is higher in dysplasia but lower in
higher-grade carcinomas. This suggests that PRL
might contribute to early carcinogenesis, whereas
advanced cancer could be independent of its actions.
The human prostate produces PRL, expresses the
PRL receptor, and PRL added to human prostates in
organ culture increases DNA synthesis and alters
epithelial morphology [44]. Among cancer cell lines,
the PRL receptor is expressed by both the
androgen-dependent LNCaP cells and the
androgen-independent PC-3 cells (Table 2) [29,43]. 
At low doses, PRL stimulates proliferation of both
DU145 and PC3 cells but has no effects on LNCaP
cells [45]. Bioactive PRL is released by DU145 cells,
and phosphorylated PRL, presumably acting as an
antagonist, suppresses their proliferation [2].

Tumors of the female reproductive tract

PRL is produced by the endometrium, myometrium
and cervix. During the late luteal phase of the
menstrual cycle, endometrial stromal cells
differentiate under the effects of progesterone and

start to express PRL [46], which is believed to play a
role in trophoblast implantation and invasion [47].
Throughout pregnancy, the decidua produces large
amounts of PRL, which is transported to the amniotic
fluid and reaches peak levels at midgestation [48]; 
the function(s) of this PRL is unclear. Cultured
decidual explants or endometrial stromal cells 
release significant amounts of PRL, and the rate of
production increases over time, suggesting removal
from inhibition [49]. Estrogen, progesterone and
relaxin increase PRL release from decidualized
endometrial cells (Table 1) [48,50]. Little is known
about PRL and endometrial neoplasms. Serum PRL
is elevated in a subpopulation of women with
endometriosis [51] but is unchanged in patients with
endometrial cancer. However, PRL synthesis by
endometrial cancer should be re-evaluated, given that
an immortalized human endometrial stromal cell
line, N5, expresses PRL and responds to estrogen and
progesterone [52].

The myometrium shares a common embryonic
origin with the stroma of the endometrium. Explants
of normal myometrium release PRL, which is similar
to pituitary PRL by all criteria [53]. PRL release from
myometrial explants is inhibited by progesterone and
interleukin 4 (IL-4) and is stimulated by human
placental conditioned medium [54] and human
chorionic gonadotropin (hCG) [55] (Table 1). 
Uterine leiomyomas, the most common pelvic tumors
in women, which rarely become malignant, also
produce PRL and respond to hCG [56]. Incubation of
myometrial or leiomyoma cells with anti-PRL
antibodies causes a significant decrease in cell
number, supporting a role for PRL as a
paracrine/autocrine growth factor [57]. PRL has also
been detected in preterm cervical mucus [58] and in
about 50% of uterine cervical carcinomas [59], but
there is currently no information about PRL
synthesis by cervical carcinoma cell lines.

The hematopoietic system

The importance of PRL as an immune regulator has
been questioned after finding that transgenic mice
lacking either PRL or its receptor have no discernible
immune deficiencies [60]. It has been proposed that
PRL is either non-essential for proper immune
function or plays a role only under stress. In humans,
elevated serum PRL levels are occasionally seen in
patients with systemic lupus erythematosus,
multiple sclerosis, rheumatoid arthritis and AIDS
[61], but leukemias and lymphomas are not
associated with increased serum PRL levels [62]. 
The potential for an autocrine/paracrine action of
PRL in hematopoietic cells is supported by several
lines of evidence. A B-lymphoblastoid cell line, IM-9-P,
produces relatively high levels of PRL, and has been
used to characterize the superdistal PRL promoter
[15]. A myeloid leukemic cell line and myeloblasts
from patients with acute leukemia produce PRL [63],
as do several non-Hodgkin’s lymphoma cell lines [64]. 
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The PRL receptor is expressed by most human
immune cells [64–66] and PRL production is evident
in normal [65] and malignant [63,64,67,68] cells
(Table 3). Whereas the PRL receptor is expressed by
most classes of immune cells, PRL is produced
primarily by T cells [65]. The precise function of PRL
in immune cells is unclear. Although the rat Nb2
lymphoma cell line depends on PRL for growth, a
similar obligate role for PRL in most human immune
cells has not been demonstrated. Rather, PRL has
been reported to act as a co-mitogen, especially by
inducing IL-2 receptor expression and promoting
IL-2-stimulated proliferation [69]. One exception is
the Jurkat T-leukemic cell line, which does not
constitutively express IL-2 or the IL-2 receptor,
whereby PRL acts as an autocrine mitogen [68].

Summary and conclusions

PRL is an extremely versatile molecule, affecting over
100 different functions across vertebrates. These
include development of the mammary gland,
initiation and maintenance of lactation, immune

modulation, osmoregulation and behavioral
modification. At the cellular level, PRL affects
mitogenic, morphogenic or secretory activities. 
The diversity of PRL actions is derived from several
components: structural polymorphism, local
production and processing, receptor isoforms and
divergent intracellular signaling pathways and
target genes.

Neither the full spectrum of PRL functions in
humans nor its involvement in carcinogenesis is well
understood. The common view is that PRL is essential
for lactation, is deleterious to reproduction when
produced in excess, but has no distinct functions in
non-pregnant, non-lactating women or in normal
men. This view can be challenged by the following.
First, although the human fetus is exposed to
unusually high levels of PRL, potential morphogenic
or regulatory functions of PRL during fetal
development are unknown because human fetuses
are inaccessible for experimentation and there are no
comparable animal models. Second, unlike GH,
dysfunctional mutations in either PRL or its receptor
have not been identified in humans. Third, the
consequences of PRL absence in adults are unclear
because hypophysectomy or panhypopituitarism do
not eliminate extrapituitary PRL. Fourth, GH can
bind to PRL receptors and compensate for some of the
functions of PRL in cases of severe PRL deficiency.
Finally, because of significant species differences in
PRL actions, extrapolation from studies with
transgenic mice to humans should be interpreted
with caution.

Future research should focus on local PRL and its
actions in a variety of human cancers. The presence of
PRL at any given site should not be considered
evidence for local synthesis. In fact, there is often a
significant discrepancy between PRL detection by
antibody-based methods and those measuring gene
expression. In addition to local production, PRL can
be delivered to tumors by binding proteins,
infiltrating lymphocytes or migratory macrophages,
and both normal and tumor cells can also internalize
PRL. Whether resulting from local synthesis or from
accumulation, tumor PRL represents a novel
molecular target in the search for the etiology and
treatment of human cancer.
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Table 3. Expression of PRL and PRL receptor in human hematopoietic cell

lines
a

Cell type PRL PRL receptor

mRNA Refs Protein Refs mRNA Refs Protein Refs

B cells

AS283 + [64] + [64] nd − [64]
CA46 − [64] − [64] nd + [64]
Daudi + [64] + [64] nd + [64]
H-BL1 + [64,65] nd + [64] nd
IM9-P3 + [64,67] + [64,67] nd nd
Ramos + [64] + [64] nd nd
U937 nd nd + [65] + [65]

T cells

HUT78 + [65] nd + [65] nd
Jurkat + [65] + [68] + [65] + [66]
Molt4 − [65] + [65] nd

Other +
EoL-1 + [63] + [63] nd nd
HL60 nd nd + [65] + [67]
K562 nd nd + [65] + [67]
YT nd + [63] + [65] + [67]

aAbbreviations: nd, not determined; PRL, prolactin;  −, not detectable; +, detectable.
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