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Abstract

Recent studies have shown that G protein‐coupled receptors (GPCRs), the largest

signal‐conveying receptor family, are targets for mutations occurring frequently in

different cancer types. GPCR alterations associated with cancer development re-

present significant challenges for the discovery and the advancement of targeted

therapeutics. Among the different molecules that can activate GPCRs, we focused

on two molecules that exert their biological actions regulating many typical features

of tumorigenesis such as cellular proliferation, survival, and invasion: somatostatin

and melatonin. The modulation of signaling pathways, that involves these two

molecules, opens an interesting scenario for cancer therapy, with the opportunity to

act at different molecular levels. Therefore, the aim of this review is the analysis of

the biological activity and the therapeutic potential of somatostatin and melatonin,

displaying a high affinity for GPCRs, that interfere with cancer development and

maintenance.
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1 | INTRODUCTION

1.1 | G‐protein‐coupled receptors as oncotargets

G‐protein‐coupled receptors (GPCRs) represent one of the largest

families of cellular membrane receptors involved in a wide variety of

cellular responses through activation of heterotrimeric G‐proteins
(Pierce et al., 2002).

GPCRs are constituted by a single subunit formed by a poly-

peptide chain that crosses seven times the plasma membrane

(Pierce et al., 2002). The binding site with the agonist is located on

the extracellular side of the receptor, whereas the binding site

with the G protein is on the receptor intracellular side. The term

"G protein" identifies a complex of three proteins, named alpha,

beta and gamma. In resting conditions, the alpha subunit binds to a

GDP molecule and the beta and gamma subunits are associated

with the alpha subunit. When the receptor is stimulated by an

agonist, the alpha subunit gets rid of GDP and takes on a molecule

of GTP, and the beta and gamma subunits dissociate from the alpha

(Weis & Kobilka, 2018).

Ligands for GPCRs are represented by a large‐scale of factors,

including sensory signal mediators, peptide and nonpeptide neuro-

transmitters, hormones, growth factors, or lipids.

Interestingly, although the different type of ligands commonly

shares GPCRs, usually distinct intracellular signaling systems are

activated (Weis & Kobilka, 2018).
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The pharmacological manipulation of GPCRs is a well‐
consolidated approach for human treatment procedures in the ner-

vous, cardiovascular, metabolic, immune and endocrine systems

(Roth & Kroeze, 2015).

Moreover, recent findings have demonstrated that many GPCRs

and their ligands are implicated in cancer initiation and progression,

including upregulated cell proliferation, metastasis, adhesion and

angiogenesis (Wu et al., 2019).

Therefore, GPCRs can be considered attractive targets for novel

therapeutic treatments of cancer and targeting GPCR‐mediated cell

signaling has emerged as an important strategy for cancer drug‐
discovery research.

GPCRs for neuropeptides (i.e., bombesin and somatostatin) are

overexpressed in numerous cancer cells, such as small‐cell lung

cancer (SCLC) or neuroendocrine tumors (NETs; Moody et al., 2018).

A significant upregulation of GPCR‐49, an orphan GPCR, in the

colon and ovarian tumors has been reported. In particular, this

receptor is overexpressed in 66% of colon tumors compared with

normal colon tissues. In addition to colon tumors, GPR49 has been

also found to be upregulated in 53% ovarian primary tumor tissues

(McClanahan et al., 2006).

Although the GPCRs and G proteins are widely dysregulated in

cancer, they have been not yet deeply investigated in oncology. This

is reflected by the fact that still few anticancer drugs with GPCRs as

directly target have been approved, according to the work of

Wu et al. (2019).

In this review, we will focus on the biology and the therapeutic

potential of two GPCRs ligands with high affinity, somatostatin and

melatonin, which have been proposed to interfere with cancer

onset, progression and maintenance (Reiter et al., 2017;

Ruscica et al., 2013).

1.2 | Somatostatin

Somatostatin, also known as somatropin release‐inhibiting factor

(SRIF), is a small neuroendocrine hormone that exists in two main

bioactive isoforms: the SRIF‐14 and the SRIF‐28, with 14 and 28

amino acids, respectively (Patel, 1999). Both isoforms originate from

the pre–pro‐somatostatin (pre–pro‐SRIF), a common pre–pro‐
peptide precursor consisting of 116 amino acids (Günther et al.,

2018). Structurally, SRIF is a cyclic molecule containing a disulfide

bond between the cysteine residues in positions 3 and 14

(cys3–cys14).

The synthesis and release dynamics of the two SRIF isoforms are

cell‐type specific, as a consequence of the different mechanisms,

employed to process the pre–pro‐SRIF. Specifically, SRIF‐14 pre-

dominates in pancreatic islets, stomach and neural tissues and is

virtually the only isoform expressed in the retina, peripheral nerves

and enteric neurons. In the brain, SRIF‐28 accounts for approxi-

mately 20%–30% of total SRIF‐like immunoreactivity. In the per-

iphery, SRIF‐28 synthesis predominates in intestinal mucosal cells

(Patel, 1999).

SRIF exerts its effects by interacting with a family of five GPCRs

receptors (SST1–5). Functionally, different activities of this small

neuroendocrine hormone can be recognized: In fact, being this hor-

mone also produced by the stomach antral D cells, it inhibits gastrin‐
producing G cells (therefore inhibiting the production of hydrochloric

acid). In the hypothalamic–pituitary axis, SRIF inhibits the secretion

of various hormones, such as thyroid‐stimulating hormone, adreno-

corticotropic hormone (ACTH), growth hormone (GH), and prolactin.

At the pancreas level, SRIF inhibits insulin (produced by β‐cells) and
glucagon (produced by α‐cells) release, thus contributing to the

regulation of blood glucose. As already mentioned, SRIF acts as an

important neurotransmitter and has a stimulating action on choli-

nergic and β‐adrenergic receptors (de Boon et al., 2019; Ortiz et al.,

2020; Rossini et al., 2019).

In addition to SRIF‐producing neuroendocrine cells, in-

flammatory, immune response cells and tumor cells may also express

SRIF (Günther et al., 2018; X. P. Wang et al., 2005).

1.3 | SRIF receptors, signaling and biological
effects

All five SRIF receptors have seven highly conserved α‐helical trans-
membrane domains, with most divergence occurring in the extra-

cellular N‐terminus and intracellular carboxyl terminus (C‐terminus)

domains (Rai et al., 2015).

SRIF 5 receptor subtypes share many structural features and

intracellular signaling pathways and have been defined as SST1,

SST2, SST3, SST4, and SST5 (Alexander et al., 2017). Each SRIF re-

ceptor subtype can be distinguished according to its cellular and

subcellular localization, as well as distinct regulation behavior fol-

lowing unique functional and pharmacological properties (Günther

et al., 2018).

SST2 and SST5 have been reported to be the most expressed

receptors, whereas SST1, SST3 and SST4 expression seems to be

more limited. Liver and spleen organs have displayed higher ex-

pression of SST3, whereas SST4 has mainly been detected in the

lungs, heart and placenta (Patel, 1999). The expression of SST2 and

SST3 receptor messenger RNAs has been reported in immune cells,

such as activated macrophages, T and B lymphocytes (Dalm et al.,

2003; Krantic, 2000; Patel, 1999).

The antiproliferative role achieved upon the activation of all

SRIF receptors has been widely recognized, even though the mole-

cular mechanisms underlying these processes are slightly different

among the different subtypes (Barbieri et al., 2013). SST1, SST2,

SST4, and SST5 have a crucial role in promoting cell cycle arrest. In

contrast, SST2 and SST3 activate proapoptotic pathways and anti-

angiogenic activity (Florio, 2008a; Moller et al., 2003).

SST1 activation displays antisecretory effects on GH, prolactin,

and calcitonin (Weckbecker et al., 2003) and also inhibits the se-

cretion of GH and ACTH, glucagon and insulin (Stengel et al., 2011).

SST2 and SST5 have inhibitory effects on GH secretion, on adreno-

corticotropin, insulin, glucagon‐like peptide‐1, interferon‐γ and
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gastric acid (Strowski et al., 2003; Weckbecker et al., 2003). SST3

interferes with cell proliferation and induces apoptosis in breast

cancer cell lines (War et al., 2015, 2011). The role of SST4 remains

largely unknown and still needs to be clarified.

The SRIF binding to its specific receptor results in the activation

of multiple signaling pathways. Specifically, all five SRIF receptors are

able to inhibit the activity of adenylyl cyclase and, simultaneously,

activate other effectors, such as mitogen‐activated protein kinase

(MAPK), to promote signaling transduction (Weckbecker et al., 2003).

SRIF antisecretory activities are reflected to the inhibition of

adenylyl cyclase effects and Ca2+ intracellular reduction levels

through coordinated steps on K+and Ca2+ channels, on the contrary,

the activation of phosphotyrosine phosphatases (PTPs), density‐
enhanced phosphatase 1/PTPη, and the activity control of MAPK are

mainly responsible for SRIF antiproliferative outputs (Günther

et al., 2018).

SRIF receptor subtypes are responsible for both adenylyl cyclase

inhibition and PTP activation. At the same time, literature data re-

ported that the stimulated signaling network by RAS has been aug-

mented by SST4, is decreased by SST3 and SST5 and modulated by

both SST1 and SST2. Moreover, SST receptor interaction acts on

K+ and voltage‐gated Ca2+ channels, NA+/K+ exchanger and

cyclooxygenase‐2 (SST2 and SST5) and phospholipase A2 (SST1 and

SST2) functionalities (Barbieri et al., 2013; Florio, 2008b). A sche-

matic illustration of the intracellular networks modulated by SRIF

receptors is shown in Figure 1.

1.4 | SRIF and cancer

Multiple signaling pathways are modulated by SRIF in controlling

cancer cell proliferation and leading to cytostatic effects mediated by

p27 or p21 cell cycle inhibitors, or some tumor suppressors like Zac1

(Theodoropoulou et al., 2006). Phosphatidylinositol 3‐kinase/protein
kinase B (PI3K/AKT) signaling pathway, the antiapoptotic protein

Bcl‐2 and the nuclear factor kappa‐light‐chain‐enhancer of activated
B cells (NF‐κB) transcription factor are inhibited by SST2 subtype,

while SST3 is reported to be responsible of apoptosis induction via

Bax activation (Ferrante et al., 2006; Guillermet‐Guibert et al., 2007;
Guillermet et al., 2003).

SRIF is also a powerful neovascularization inhibitor. The formation

of a new vessel from pre‐existing ones passes through several well‐
defined stages, characterized by modifications of the endothelium and

the extracellular matrix. In particular, it has been reported that acti-

vation of SST2 and SST3 displays antiangiogenic properties, with a

consequent blockade of viability and migration of endothelial cells and

the inhibition of the proangiogenic factors release, such as vascular

endothelial growth factor (VEGF), platelet‐derived growth factor

(PDGF), insulin‐like growth factor and basic fibroblast growth factor

(Dal et al., 2018; Dasgupta, 2004; Florio et al., 2000; O'Toole & Sharma,

2020). SRIF reduces PDGF levels following inhibition of cell prolifera-

tion and motility of endometrial cells (Annunziata et al., 2012).

Tumors that can be targeted by SRIF and its analogs include,

besides the pituitary adenomas, NETs of the gastro‐entero‐

F IGURE 1 Schematic illustration of the intracellular signaling pathways modulated by somatostatin receptors (SST1–5). (a) SRIF‐bound
SST1–5 receptors induces the inhibition of the activity of adenylyl cyclase and the calcium channels, with a decrease of cyclic AMP (cAMP)
levels and the intracellular Ca2+ concentration. (b) The SRIF receptor activation involves different cellular phosphorylation patterns. SRIF and
analogs activate different PTPs, such as SHP‐1, SHP‐2, and PTPη. Activated SHP‐1 triggers intracellular proapoptotic signals involving the
induction of caspase activation and p53/Bax. SHP‐2 activates Src that directly interacts with PTPη inducing its phosphorylation and hence
activation. PTPη dephosphorylates intracellular effectors involved in the control of cell cycle progression, such as the MAPK/ERK and the
PI3K/AKT pathways, upregulating the cyclin kinase inhibitors p21cip1/waf1 and p27kip1 and the tumor suppressor gene Zac1. As a result,
PI3K/AKT and MAPK pathways are inhibited resulting in decreased cell growth and proliferation. PM, plasma membrane

COSTANZI ET AL. | 3



pancreatic tract, SCLCs, carcinoids, breast cancers, and malignant

lymphoma. SST1 dominates in prostate cancer tissue, whereas

SST1–3 subtypes are expressed in breast, thyroid, melanoma, and GI

tumor tissue. SST1–3 are also found in hepatocellular carcinoma and

in ovarian tissue (both benign and malignant), where the expression

of SST5 is also reported (Barbieri et al., 2013; Hasskarl et al., 2011;

Soukup et al., 2019). SST receptors are also commonly expressed in

tumors displaying both endocrine (pituitary adenoma, neuroendo-

crine, and gastropancreatic neoplasms, thyroid, adrenal, and small‐
cell lung carcinomas) and nonendocrine (gliomas, meningiomas,

breast, and ovarian, prostate cancers, osteosarcomas) histological

characterizations (Lee et al., 2020; Manoochehri et al., 2020; Thodou

& Kontogeorgos, 2020).

In a phase 1–2 recruiting clinical trial with 30 subjects affected

by differentiated metastatic NETs involving the gastrointestinal

tract, lung and pancreas, the pharmacological combination of the

mammalian target of rapamycin, inhibitor Everolimus, and a radi-

olabeled SRIF analogous has been analyzed as first‐line therapy. The

study is ongoing, with the aim to assess the progression‐free survival

and overall survival (OS), as well as the treatment safety (see www.

clinicaltrial.gov, NCT03629847).

However, SRIF has a short circulating half‐life (less than 3min in

human serum), therefore its use in the clinical practice is not simple.

This relevant feature leads to the need for continuous parenteral

administration and to the postinfusion rebound observed for several

target hormones, such as GH and insulin. For these reasons, more

potent and long‐acting synthetic somatostatin analogs (SSAs) have

been developed. To date, two classes of SSAs can be distinguished:

the first and the second generation of SSAs (Gatto et al., 2019).

The SSAs first generation is represented by small molecules

(octapeptides). These molecules have a large hydrophobic residue,

consisting of phenylalanine, leucine, or isoleucine located at position

8, and a small hydroxylated residue or glycine at position 5. The two

main clinically approved molecules are octreotide (OCT) and lan-

reotide (LAN). An example of octapeptide is angiotensin II, which has

a crucial role in the rennin–angiotensin system. In particular, angio-

tensin II type 2 receptor blocks cell proliferation and induces apop-

tosis. These compounds display enhanced half‐life compared to SRIF

and several clinical trial data reported their anti‐secretory activity in

hormone‐secreting pituitary adenomas and neuroendocrine neo-

plasms (NENs). NENs comprises tumors that are heterogeneous from

a clinical and biological point of view and originate from neu-

roendocrine cells located in different body organs (e.g., pancreas,

stomach, lung, and colon; Oronsky et al., 2017). Nowadays, OCT and

LAN are considered the first‐line clinical treatment for acromegaly, a

serious systemic condition mainly dependent on somatotroph pitui-

tary adenomas, due to the predominant expression of SST2 on tumor

pituitary cells (Giustina et al., 2014).

Pasireotide (PAS), consisting of a stable cyclohexapeptide with a

long half‐life (about 24 h), is the only SST ligand approved by EMA

and FDA for clinical use (Reubi et al., 2002; Smith et al., 2004). PAS is

the first approved drug treatment for Cushing's disease, an ex-

tremely disabling neuroendocrine condition caused by chronic

hypersecretion of the ACTH, which, in over 70% of cases, originates

from a pituitary adenoma. This results in a stimulation of the adre-

nergic glands to produce cortisol excess.

Currently, two PAS formulations are available in the clinics: a

short‐acting formulation and a long‐acting formulation for in-

tramuscular injection (Kjell & Steven, 2016).

In addition to their approved use in modulating antisecretory

effects, these SSAs are also being investigated for their antitumor

activity in patients with cancers of the thyroid, prostate, breast,

ovary and other solid tumors (Gomes‐Porras et al., 2020).

A study focused on the effects of SRIF analogs on two different

human late‐stage prostate cancer cell lines showed that SST1, SST2,

and SST5 are differently distributed amongst cell compartments like

the nucleus, microsomes, and lysosomes (Ruscica et al., 2014). Some

studies have demonstrated that OCT and, to a lesser extent, LAN are

associated with positive outcomes in patients with solid tumors in

which SST2 and/or SST3 levels predominate, such as prostate and

gastric cancers (Hasskarl et al., 2011).

Another SRIF analogous—Cifetrelin—has demonstrated in vivo

antitumor activity in breast adenocarcinoma, cervical cancer, and

colorectal cell lines. However, the mechanism of action remains un-

clear. Cifetrelin is a not cyclic pentapeptide in nature and induces

apoptosis in a p53‐independent manner and suppresses the NF‐κB
complex. Moreover, cifetrelin demonstrated a higher antitumor ac-

tivity than natural SRIF and illustrated its potential as an antitumor

therapy element to further studies (Mikhaevich & Krasil'nikov, 2013).

SRIF analogs display high efficacy in the nanomolar range,

therefore their selectivity is widely confirmed. However, the devel-

opment of new analogs that could sustain a strong bioavailability and

an adequate persistence in blood would certainly offer an alternative

way to parenteral treatments. The clinical evaluation of new analogs

will represent a crucial and careful step, as their pharmacological

activity has been investigated only in preclinical models.

1.5 | Melatonin

Melatonin (N‐acetyl‐5‐methoxytryptamine) is an endogenous neu-

rohormone produced in mammals to regulate the circadian rhythm

(Claustrat et al., 2005). The rhythm is generated by a circadian clock

located in the hypothalamus suprachiasmatic nucleus (SCN). This

clock is set 24 h a day through the natural light–dark cycle. The light

signal through the retina reaches the SCN, which sends a circadian

signal to the pineal gland. All this process guides the synthesis of

melatonin. Chemically, melatonin is an indolamine, derived from the

amino acid tryptophan, and has lipophilic properties due to two

functional groups the 5‐methoxy group and the N‐acetyl side chain

(Gunata et al., 2020).

Melatonin can be also produced by the gastrointestinal tract, the

skin, the bone marrow and the innate immune system, not in re-

sponse to the light–dark cycle, but according to the requirements of

the local tissues (Talib, 2018; Venegas et al., 2012). The extrapineal

synthesis of melatonin suggests that signaling pathways responding
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to multiple cues (not necessarily restricted to the circadian rhythm of

the organism) might be involved in the regulation of indoleamine

production (Venegas et al., 2012). Accordingly, melatonin has been

described to be involved in the regulation of several cellular pro-

cesses, which include antioxidant, anti‐inflammatory and antiviral

properties, genomic instability, regulation of the reproductive cycle

and blood pressure and the ability to modulate mitochondrial

homeostasis (Akbari et al., 2020; F. Cheng et al., 2020; Gunata et al.,

2020; Mayo et al., 2017; Zare Javid et al., 2020).

The melatonin ability to reduce DNA damage surely derives, at

least in part, from the direct scavenging actions of the parent mo-

lecule as well as its metabolites, following the stimulation of anti-

oxidant enzymes that lead to reactive oxygen species removal, thus

avoiding DNA destruction (Fadda et al., 2020). Circulating melatonin

hydroxylation takes place in the liver by cytochrome P450 mono-

oxygenases, following melatonin conjugation with sulfate to form

6‐sulfatoxymelatonin which is then eliminated from the body with

the urine (Claustrat et al., 2005).

1.6 | Melatonin receptors, signaling and biological
effects

As for SRIF, also melatonin receptors belong to the G‐protein su-

perfamily. In mammals, two subtypes of melatonin receptors, termed

MT1 and MT2 respectively, have been described. They can be dis-

tinguished on the basis of their specific molecular structure, which

leads to different sleep regulation and circadian rhythms, to the

development of mood disorders, learning and memory processes,

neuroprotection and cancer (Dubocovich & Markowska, 2005).

A third receptor, MT3, has been recently characterized as the

enzyme quinone reductase 2 and participate in antioxidant activities

by preventing quinone electron transfer reactions (Boutin & Ferry,

2019). This receptor has been reported to synergize with melatonin

on cytotoxic and apoptotic processes induced by chemotherapeutics

(Pariente et al., 2017).

These melatonin receptors display putative glycosylation sites

in their N‐terminus and phosphorylation sites for protein kinase

C (PKC), casein kinase 1 and 2, and protein kinase A (PKA) which may

participate in the regulation of receptor function as demonstrated for

other GPCRs (Dubocovich & Markowska, 2005).

Expression of MT1 and MT2 receptors, either alone or together

within the same cell, has been reported in various tissues (Samanta,

2020). The MT1 receptors are expressed in the SCN, retina, cere-

bellum, hippocampus, central dopaminergic pathways (i.e., substantia

nigra, ventral tegmental area), as well as in the liver, kidney, gall-

bladder, skin, ovary, mammary gland, testis, coronary blood vessels,

and aorta (Ekmekcioglu et al., 2001; Feinberg et al., 2018; Reyes‐
Resina et al., 2020; Samanta, 2020; Wen et al., 2020). On the other

hand, expression of MT2 receptors is restricted to the brain

(El‐Khatib et al., 2020; Wongprayoon & Govitrapong, 2020). The

MT3 receptor has been found to be expressed in the liver, kidney,

brain, heart, lung, intestine, muscle, and brown adipose tissue

(Nosjean et al., 2000) and some pharmacological evidence found

that it is also expressed in the eye (Pintor et al., 2003).

Melatonin binding to its receptors results in the activation of a

variety of signaling pathways and this response is both tissue‐ and
cell‐type dependent (Chen et al., 2020; Yang et al., 2020).

A well‐known signaling network for melatonin receptors is the

inhibition of cAMP formation via pertussis toxin‐sensitive G proteins,

with consequent stimulation of PKC in the SCN. Melatonin‐mediated

low levels of cAMP have been observed in different mammalian

tissues (Hardeland, 2017; Mao et al., 2016) The MT1 melatonin

binding can lead to the inhibition of cAMP signal transduction cas-

cade resulting in PKA activity decrease and nuclear factor cAMP‐
responsive element‐binding protein phosphorylation (Chan et al.,

2002). Moreover, activation of endogenous MT1 receptors in ovine

pars tuberalis cells increases intracellular calcium levels via PTX‐
insensitive G proteins. On the other hand, it has been documented a

calcium influx inhibition PTX‐sensitive G protein‐dependent in neo-

natal rat pituitary cells (Slanar et al., 2000).

Similar mechanisms for signaling transduction have been de-

scribed for MT2 receptors (Oishi et al., 2017) that promote the re-

cruitment and accumulation of second messengers and downstream

molecules regulating multiple signaling networks, including phos-

phoinositide production and the inhibition of both adenylyl cyclase

and soluble guanylyl cyclase networks (Dubocovich et al., 2010; von

Gall et al., 2002).

In the SCN, melatonin is responsible of PKC activity increment

through the activation of MT2 melatonin receptors, and this

response is blocked by the selective MT2 receptor antagonist

4‐phenyl‐2‐propionamidotetraline, that is also able to block the

phase advances to neuronal firing rate stimulated by the picomolar

concentration of melatonin, at distinct times. A schematic illustration

of the intracellular signaling pathways modulated by melatonin

receptors is shown in Figure 2.

1.7 | Melatonin and cancer

Several studies have reported that melatonin can modulate carci-

nogenesis for a wide variety of tumors, such as breast, prostate, lung,

pancreas, colorectal, skin, and gastrointestinal system cancers (Dana

et al., 2020; Ferreira et al., 2020; Moradkhani et al., 2020; Najafi

et al., 2020). Melatonin induces antiproliferative effects and apop-

tosis and this is in part due to antioxidative and free radical

scavenging effects (Jardim‐Perassi et al., 2014; Sainz et al., 2003).

However, the most relevant neurohormone effect has been reported

to be more prominent in breast cancer (Hill et al., 2015).

In breast cancer, melatonin inhibits the proliferation of MCF‐7
cells, through downregulation of AKT and MAPK networks and

matrix metallopeptidase expression inhibition. Moreover, melatonin

interacts with estrogen receptor‐α (ERα) and exerts inhibitory effects

on calmodulin, which phosphorylates ERα, therefore facilitating es-

trogen binding (Proietti et al., 2013). Melatonin exerts its antitumor

activity by reducing proliferation and c‐Myc expression of
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triple‐negative breast cancer cells, and this activity is mediated through

the regulation of microRNAs (miRNAs) specific set, following melatonin

treatment (Ferreira et al., 2020). Moreover, melatonin can also induce

p53 tumor suppressor activity in MCF‐7 and in the colorectal carcinoma

cell line HCT116 and blocking melatonin activity results in a relevant

impairment of p53‐mediated prevention of DNA damage (Mediavilla

et al., 1999; Santoro et al., 2013).

In two types of breast cancers, specifically the ER+ and the

HER2+ tumors, the expression of the MT1‐receptor has been shown

higher than the triple‐negative tumor phenotypes and a substantial

MT1 expression level has been reported to be associated with

patient's longer OS in the group of ER+ treated with the nonsteroid

drug tamoxifen (Jablonska et al., 2013).

Melatonin antiproliferative activity has been also documented in

prostate cancer cells (Joo & Yoo, 2009; Jung‐Hynes et al., 2011) with

the involvement of the MT1‐receptor in the oncostatic effect mod-

ulation (Tam et al., 2008; Xi et al., 2000). Indeed, in transformed and

malignant prostate epithelial cells, melatonin has also been shown to

upregulate, in an MT1 receptor‐dependent mechanism, p27kip1,

whose downregulation is involved in the development of this type of

cells (Fernandez et al., 1999; Tam et al. 2008, 2007). Additionally, in

the same tumor model, melatonin might also dislocate androgen

receptors from the nucleus to the cytoplasm (Rimler et al., 2001),

further underlining the melatonin anticancer effects. In both

androgen‐dependent and independent prostate cancer cells,

melatonin is able to attenuate the cell cycle progression and cellular

differentiation (Sainz et al., 2005), in addition to intervening in the

glucose metabolism decrease (Hevia et al., 2017).

In the hepatocarcinoma HepG2 cell line, melatonin administra-

tion has been also reported to control carcinogenesis by inducing the

upregulation of proapoptotic proteins, transactivation of several

transcription factors, and inhibition of signaling networks as extra-

cellular signal‐regulated kinase 1/2 (ERK1/2) and p38 (Carbajo‐
Pescador et al., 2011). Progression of hepatocellular carcinoma has

also been described to be regulated by melatonin through the up or

downregulation of some miRNAs, such as miRNA Let7i‐3p: In this

case, melatonin has been shown to inhibit hepatocellular carcinoma

progression through this miRNA‐mediated RAF1 expression reduc-

tion (T. H. Wang et al., 2018).

Different studies have been focused on the molecular mechan-

ism identification regulating the capacity of melatonin to induce

apoptosis in tumor cells. Kim and Yoo (2010) have demonstrated

that melatonin treatment induced apoptosis in a dose‐dependent
manner in an in vitro model of human prostate cancer (LnCaP cell

line). In this study the treatment of cells with 3mM melatonin has

reduced their viability up to 80% in 48 h, increased levels of BAX,

caspase 3, and caspase 9, as well as a potent reduction in BCL‐2 (Kim

& Yoo, 2010). Authors also have demonstrated that p53 activation

by melatonin plays a key role in the initiation of the apoptosis sig-

naling pathway. Moreover, melatonin‐induced apoptosis in prostate

F IGURE 2 Schematic illustration of the intracellular signaling pathways modulated by melatonin receptors (MT1–3). (a) On the left, the
common signaling pathways activated by both MT1 and MT2 receptors are shown. The adenyl cyclase inhibition leads to the decrease of cAMP
levels and therefore to the decrease of cyclic AMP‐dependent protein kinase activity (PKA). As a consequence of the inactivation of PKA,
the transcription factor cAMP‐responsive element‐binding protein is also inhibited. The activation of phospholipase C (PLC) leads to the
cleavage of phosphatidylinositol diphosphate (PIP2) into inositol triphosphate (IP3) and diacylglycerol (DAG). These second messengers
stimulate increased intracellular Ca2+ and PKC, respectively. (b) On the right, the inactivation of guanylyl cyclase, leading the decrease of cGMP
concentration via binding to the MT2 receptor is shown. (c) The MT3 is a quinone reductase 2 (QR2), a known detoxifying enzyme that
reduces menadione and other quinones. PM, plasma membrane
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cancer cells via activation of the MAPKs pathway (Joo & Yoo, 2009).

Additionally, melatonin can promote apoptosis in gastric cancer cell

lines via inhibition of NF‐κB (W. Li et al., 2015).

The proapoptotic effects of melatonin have been evaluated in

human breast cancer and melanoma cell lines (Gatti et al., 2017). In a

study, four melatonin analogs at different concentrations have been

administered and it has been shown that low concentrations of

melatonin have a significant proapoptotic effect in breast cancer

cells, such as UCM 1037 and MDA‐MB‐231. Alonso‐González et al.

(2018) have reported that the expression of the proapoptotic BAD

and BAX genes, induced by melatonin, leads to the inhibition of the

antiapoptotic gene BCL‐2 expression caused by docetaxel, a che-

motherapy drug with antimitotic action. This study further highlights

the role of melatonin as an adjuvant in cancer chemotherapy, which

may have implications for new clinical trials using melatonin in

combination with standard chemotherapies (Alonso‐Gonzalez et al.,

2018). At the same time, melatonin synergistically enhanced

vemurafenib‐mediated inhibitions of cell viability, migration, and in-

vasion of melanoma cells, and promoted apoptosis, with cell cycle

arresting (Hao et al., 2019). Activation of apoptosis induced by

melatonin has been reported also in other cancer types such as in

human neuroblastoma, hepatocarcinoma, and ovarian cancer (S. Lin

et al., 2017; Suwanjang et al., 2013; Zare et al., 2019).

However, Cucina et al. (2009) have observed that apoptosis in-

duction in MCF‐7 cells following melatonin treatment occurs through a

biphasic mode. The research group have demonstrated indeed that

apoptosis can be triggered by different pathways and at different time

points, upon melatonin treatment. Results have shown that early peak of

apoptosis can be observed at 24 h after treatment through a caspases‐
dependent process, while a caspase‐independent late peak is observed

at 96 h after treatment (Cucina et al., 2009; Santoro et al., 2012).

Finally, melatonin has been shown to have additional properties

in tumor growth, like, suppressing the expression of angiogenic

markers (Goradel et al., 2017; Xu et al., 2020). Literature data have

reported the role of millimolar concentrations of melatonin in re-

ducing the expression levels of an important growth factor involved

in tumor angiogenesis, such as the VEGF. The reduction has mainly

been observed during hypoxia conditions in breast cancer, in hepa-

tocarcinoma HepG2 and ovarian cells (J. Cheng et al., 2019; Colombo

et al., 2016; Zonta et al., 2017).

1.8 | The role of melatonin in potentiating the
therapeutic outcome in oncological treatments

In addition to radiotherapy, melatonin showed some evidence for

potentiating the therapeutic outcome and alleviation from the che-

motherapy side effects (Sanchez‐Barcelo et al., 2012). Moreover,

melatonin may induce a lower frequency percentage of chemotherapy‐
induced asthenia, stomatitis, cardiotoxicity, and neurotoxicity

(Y. Li et al., 2017).

Experimental studies suggest that melatonin, via different me-

chanisms, reduces the incidence of breast development in rodents

exposed to toxic and tumor‐inducing chemicals, therefore giving

rise to antitumoral behavior. Indeed, it has been shown that

melatonin, given to female rats for 15 days before the use of

carcinogens partially prevented the onset of breast adenocarcinomas

(Lenoir et al., 2005).

In reference to the administration of taxanes, a class of che-

motherapeutic agents, nanomolar concentrations of melatonin po-

tentiates the anticarcinogenic effects of paclitaxel in an endometrial

cancer cell line (Ishikawa) expressing MT1 receptors (Watanabe

et al., 2008).

A pilot clinical trial recruiting 22 breast cancer patients to assess

melatonin neuroprotective effects during a chemotherapy cycle

based on taxanes has been carried out. These patients received ei-

ther paclitaxel (750mg/m2 iv, weekly, for 2–3 doses) or docetaxel

(75mg/m2 iv, every 2–3 weeks, for 6 doses). The result was that

patients receiving melatonin during taxane chemotherapy developed

a lower incidence of neuropathy onset, suggesting a relevant role of

melatonin in the treatment and prevention of neuropathies, there-

fore a neuroprotective role (Nahleh et al., 2010).

In a recruiting clinical study (see www.clinicaltrial.gov,

NCT02506777) the activity of melatonin and metformin in locally ad-

vanced breast cancer has been investigated, with a coadministration of

chemotherapy made of fluorouracil, doxorubicin and cyclophosphamide.

First data have reported that both melatonin and metformin reduce

chemotherapy side‐effects, increasing objective response during treat-

ment. The protective role of melatonin and metformin against che-

motherapy side effects have been also seen in another study involving

patients with local advanced breast cancer (see www.clinicaltrial.gov,

NCT02506790). Both drugs increase the patient response rate to tor-

emifene treatment, rather than with toremifene alone.

In another recruiting clinical program involving 80 breast cancer

patients, the aim was to analyze melatonin in a cream formula

against dermatitis that could arise after radiation therapy. Therefore,

also in this case, the rationale was to define the importance of

melatonin in improving the cancer patient's quality of life (see www.

clinicaltrial.gov, NCT03716583).

Always focusing on the analysis of cancer patient's quality of life,

melatonin activity has been also documented in the elderly. Indeed,

the aim of a recruiting trial with an estimated enrollment of 500

participants was to give melatonin supplementation (in tablet form)

for 3 months before bedtime together with standard anticancer

treatment to elderly cancer patients with tumor metastasis. The

purpose was to analyze if melatonin could represent a beneficial

complementary treatment, to reduce fatigue, depression, sleep dis-

turbances, and cognitive impairment (see www.clinicaltrial.gov,

NCT02454855).

1.9 | The potential antiviral role of melatonin in
the attenuation of coronavirus disease 2019 infection

The current severe acute respiratory syndrome coronavirus 2 (SARS‐
CoV‐2) called coronavirus disease 2019 (COVID‐19) has spread all
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over the world (Bulut & Kato, 2020; Harapan et al., 2020) and al-

though the availability of different antiviral therapy protocols and

the mechanical respiratory support, the existence of a specific

treatment is not yet known.

As already known, SARS‐CoV‐2 is mainly transmitted through

droplets, direct contact and potentially via the fecal–oral pathway

(Gu et al., 2020). Primary viral replication is reported to appear on

the upper respiratory tract (nasal cavity and pharynx), with further

multiplication in the lower respiratory tract and in the gastro-

intestinal mucosa, causing a slight viremia (Xiao et al., 2020).

Previous works have reported the positive effects of melatonin

in alleviating acute respiratory stress induced by the virus and other

pathogens (Yip et al., 2013), therefore allowing to enhance the hy-

pothesis of the potential supportive and adjuvant role of melatonin in

treating COVID‐19 pandemic infection. Melatonin attenuates the

cytokine serum levels and lipoperoxides in patients affected by dia-

betes mellitus and periodontitis (Bazyar et al., 2019; Sanchez‐Lopez
et al., 2018), is able to modulate angiogenesis, has preventive effects

against myocardial infarction and other cardiac disorders, and is

protective against cerebral pathologies (Nduhirabandi et al., 2016).

Moreover, melatonin safety has been documented in different stu-

dies, and also this property would be highly beneficial in COVID‐19
patients. The anti‐inflammatory and antioxidant activities of mela-

tonin, with consequent regulation of the expression of important

modulators involved in inflammation and oxidation, have also been

highlighted in the lung (Maarman, 2017), as well as Vitamin D anti‐
inflammatory and antioxidant properties. Vitamin D is often used in

association with steroid therapy in asthmatic patients (Xystrakis

et al., 2006) with a significant reduction of the cytokine storm and

regulation of known signaling pathways such as those involving

MAPK or AKT. Given all these findings and given the fact that both

compounds share similar therapeutic molecular mechanisms, recent

work has reported the potential benefits that a synergistic combi-

nation of vitamin D and melatonin could have in COVID‐19 patients,

in terms of prevention and treatment at the pulmonary level (Martin

Gimenez et al., 2020). This combination could have a positive value in

preventing the activation of signaling cascades involved in the in-

flammatory processes, in reducing the expression of inflammatory

markers as TNF‐α and overall, in a perspective of prevention, in

preparing the human body to overcome the pathological con-

sequences of COVID‐19, reducing also the mortality rate.

1.10 | SRIF and melatonin signaling pathways: Are
there similarities?

As previously reported, SRIF and melatonin are two neuroendocrine

hormones that mediate through GPCR's different cellular and bio-

chemical processes. Although the origin of these two hormones is

different, both are able, at the signal transduction level, to activate

PI3K/AKT and MAPK/ERK signaling pathways, considered crucial in

the onset and progression of tumors. Both hormones are responsible

of adenylyl cyclase inhibition and are capable to positively promote

the activity of p53 in different tumor models, thus preventing DNA

damage, and to restrain the onset of new blood vessels by inhibiting

the proangiogenic factor VEGF and other growth factors.

A relevant aspect reported by Zibolka et al. (2015) is that mel-

atonin could have inhibitory effects on SRIF secretion that can pri-

marily be traced back to MT1‐receptor activity. In a human

pancreatic δ‐cell model, the overexpression of this isoform sig-

nificantly lowered SRIF secretion level (1 nM melatonin concentra-

tion) and at low doses of melatonin suppressed SRIF upregulation

levels at low‐glucose conditions, pointing to a significant influence of

melatonin, and especially of the MT1 receptor, on the regulation of

SRIF and insulin release.

Regarding biochemical aspects, SRIF and melatonin receptors

share similar structural characteristics and signaling pathways.

A schematic signaling pathway could be exemplified as follows:

agonist (such as somatostatin or melatonin) GPCR binding induces a

conformational change in the receptor that triggers signaling

downstream outputs involving the heterotrimeric G protein activa-

tion. Subsequently, the G‐proteins mediate the production of second

messengers, including cyclic‐AMP, inositol trisphosphate and calcium

flux, as common signaling routes.

Of note, a peculiar signaling pathway for somatostatin is ex-

clusively driven by SST3 which is able to induce p53/Bax pathways,

causing apoptosis activation. In a recent study in which primary cells

from nonfunctioning pituitary tumors patients have been treated with

the first SST3‐agonist peptides, it was observed a clear increase of

caspase activity, which is likely translated into an increase of apoptosis

(Vazquez‐Borrego et al., 2020). Other recent studies have suggested

that the SST3 activation induces antiproliferative or proapoptotic cell‐
specific effects. In particular, SST3 can especially induce apoptosis in

MCF‐7 and cell cycle arrest in the MDA‐MB‐231 breast cancer cell

line (S. A. War et al., 2015) and the same pathway can be triggered by

melatonin in breast cancer cells (Gatti et al., 2017).

Additionally, SST1 (as well as SST3 or SST4, but not SST2 e SST5)

inhibits the activity of sodium/hydrogen exchanger 1 via a PTX‐
independent mechanism as observed in SST1‐neuroblastoma cells

(Pola et al., 2003) occurring in increased intracellular acidification

(C. Y. Lin et al., 2003) which is able to inhibit the rho‐GTPases
dependent‐cell migration (Buchan et al., 2002).

Further studies need to be assessed to clarify the potential

biomolecular correlation between SRIF and melatonin, also with the

aim to give a rationale in their potential synergistic use in blocking or

slowing down oncogenesis and neovascularization processes.

2 | CONCLUSIONS

The purpose of this review was to highlight the biological aspects and

the therapeutic potential of two molecules, SRIF and melatonin,

displaying both high affinity for GPCRs and their role in controlling

cancer development processes and maintenance.

GPCRs, most likely expressed in every organ in the human body

as numerous studies have shown, open new therapeutic options with
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novel combination therapies, both in preclinical and in clinical trials.

Targeting multiple signaling networks with combination therapy,

such as the administration of SRIF analogs with other therapeutic

agents as GH receptor antagonists, or therapeutic adjuvants such as

melatonin could improve the outcome for cancer treatment. Indeed,

in addition to the already known role of SRIF receptors in the

modulation of several psychiatric and neurological disorders, specific

receptor subtypes have been seen to be associated with the control

of tumor development and the regulation of relevant cellular pro-

cesses such as apoptosis and angiogenesis.

At the same time, literature data reported that also melatonin

could have the potential to be an adjuvant of cancer treatments,

reinforcing the therapeutic outcomes and limiting the drug and ra-

diation collateral effects. In clinical trials, melatonin showed the ca-

pacity to further potentiate the pharmacological effect of several

chemotherapeutics, improving the overall cancer patient quality of

life. Therefore, the involvement of both SRIF and melatonin in acti-

vating different anticancer strategies and processes such as pro-

survival signaling and angiogenesis inhibition could represent a new

frontier in therapeutic treatments (Figure 3).

Despite the current understanding of the mechanisms involved

in GPCR signaling, much remains to be learned about the correlation

underlying the signaling pathways of different GPCRs, their hetero-

dimerization, internalization, and distribution pattern in various

tumor cells.

The development of specific and more potent SRIF analogs will

further highlight the role of SRIF in cancer treatment, in addition to

the therapeutic capacity of melatonin, especially in clinical trials, for

the formulation of promising therapeutic protocols.
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